



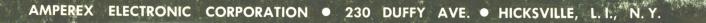

446



ELECTRON TUBES & SEMICONDUCTORS

# Amperex

OB


U

for

COMMUNICATION INDUSTRIAL USE RECTIFICATION RADIATION DETECTION ELECTRO-MEDICAL USE AMATEUR USE SPECIAL PURPOSES

There are a second seco

REVISED DECEMBER 1959





## FOREWORD

This condensed catalog has been compiled for those in the engineering field who seek the proper tubes and semiconductors to suit their applications.

It is also intended to serve as a quick reference guide for initial equipment as well as for replacement purposes.

More detailed data sheets and brochures on the various products listed herein are available upon request. A detailed engineering transmitting, and power tube manual (2 volumes) giving complete tube characteristics and application data is available to engineers at the nominal cost of \$11.00. A semiconductor and special purpose tube manual is also available at \$5.50.

AMPEREX is always interested in quoting on all tube and semiconductor requirements. Our research, development and manufacturing facilities are such that we welcome inquiries on new products.

AMEPEREX ELECTRONIC CORPORATION

|                                               | page  |
|-----------------------------------------------|-------|
| TUBES                                         | 2-23  |
| Cold Cathode Trigger Tubes                    | 20    |
| Entertainment & Audio Tubes                   | 8     |
| Ignitrons                                     | 22    |
| Indicator Tubes                               | 12    |
| Klystrons                                     | 21    |
| , Magnetrons                                  | 20    |
| Noise Diodes                                  | 21    |
| Permanent Sensitivity Radiation Counter Tubes | 18    |
| Power Tubes                                   | 2     |
| Tetrodes & Pentodes                           | 2     |
| Triodes                                       | 4     |
| Premium Quality Tubes                         | 12    |
| Rectifier Diodes                              | 22    |
| Subminiature Tubes (Screen Grid Types)        | 16    |
| Thyratrons                                    | 8     |
| Hydrogen                                      | 8     |
| Mercury Vapor & Inert Gas Triodes & Tetrodes  | 8     |
| Traveling Wave Tubes                          | 21    |
| UHF Special Purpose Tubes                     | 16    |
| Voltage Reference & Regulator Tubes           | 21    |
| SEMICONDUCTORS                                | 24-31 |
| Diodes                                        | 24    |
| Germanium                                     | 24    |
| Silicon                                       | 26    |
| Silicon Reference                             | 26    |
| Photodiodes                                   | 26    |
| Rectifier Diodes                              | 26    |
| Germanium                                     | 26    |
| Silicon                                       | 26    |
| Transistors                                   | 28    |
| AF Types                                      | 28    |
| RF Types                                      | 28    |
| Industrial, Switching, and Computer Types     | 30    |
| Phototransistors                              | 30    |

# INDEX

## TUBES

ļ

#### **POWER TUBES TETRODES & PENTODES**

|                                  |             |                |                      |                   |                     |                | TYPICAL OPER       | ATION        |                  |             |
|----------------------------------|-------------|----------------|----------------------|-------------------|---------------------|----------------|--------------------|--------------|------------------|-------------|
| TYPE NO.                         | FIL         | AMENT          | . Mu                 | Μαπ.              |                     | PLATE          |                    | G            | RID              | SCREEN      |
|                                  | Volts       | Amps           |                      | Diss.<br>Watts    | Volts<br>DC         | Amps<br>DC     | Output<br>Watts    | Volts<br>DC  | Amps<br>DC       | Volts<br>DC |
| PE06/40N                         | 6.3         | 1.3            | 5.5 1                | 25                | 600                 | 195            | 72                 | -75          | 0                | 300         |
| 4W300B                           | 6.0         | 2.9            | 5.2 1                | 300               | 2,000               |                | 390                | -            | -                | -           |
| 4X150A                           | 6.0         | 2.6            | 51                   | 250               | 1, 250              | 0.200          | 140                | -115         | 0.011            | 280         |
| 4X250B <sup>2</sup><br>(ceramic) | 6.0         | 2,6            | 5.2 1                | 250               | 2,000               | 0.250          | 390                | -90          | 0.026            | 250         |
| 4X250F<br>(ceramic)              | 26.5        | 0,56           |                      |                   |                     |                |                    |              |                  |             |
| 4 <b>X</b> 500A                  | 5.0         | 13.5           | 6.2 <sup>1</sup>     | 500               | 4,000               | 0.315          | 930                | -150         | 0.016            | 500         |
| 4-125A/4D21                      | 5.0         | 6.5            | 5.9 1                | 125               | 2, 500              | 0.200          | 375                | -150         | 0.012            | 350         |
| 4-250A/5D22                      | 5.0         | 14.5           | 5.1 1                | 250               | 4,000               | 0.312          | 1,000              | -225         | 0.090            | 500         |
| 4-400A                           | 5.0         | 14.5           | 5.1 1                | 400               | 4,000               | 0.350          | 1, 100             | - 220        | 0.018            | 500         |
| 807                              | 6.3         | 0.9            | 8 1                  | 25                | 600                 | 0,100          | 40                 | -45          | 0.004            | 250         |
| 5894                             | 12.6<br>6.3 | 0.9<br>1.8     | 8.2 1                | CCS=40<br>ICAS=45 | CCS=600<br>ICAS=750 | 0.200          | CCS=85<br>ICAS=105 | -80          | 0.005            | 250         |
| 6075/AX-9907                     | 6.3<br>6.3  | 33,5<br>33,5   | $7.5^{1}$<br>7.5^{1} | 3,000<br>3,000    | 4,000 5,000         | 1.10<br>1.10   | 3,300<br>4,100     | -250<br>-250 | 0.070            | 800<br>800  |
| 6076/A <b>X</b> -9907-R          | 6.3<br>6.3  | 33,5<br>33,5   | 7,5<br>7,5           | 3,000<br>3,000    | 4,000<br>5,000      | 1.10<br>1.10   | 3,300<br>4,100     | -250<br>-250 | 0.070<br>0.070   | 800<br>800  |
| 6079/AX-9908                     | 10.0        | 9.7            | 9,5 <sup>1</sup>     | 500               | 5,000               | 0,452          | 1,760              | - 200        | 0.030            | 700         |
| 6083/AX-9909                     | 12.6        | 1,35           | 6.7                  | 45                | 1,000               | 0.017          | 132                | -120         | 0,005            | 250         |
| 6146                             | 6.3         | 1.25           | 4.5                  | CCS=20<br>ICAS=25 | 600<br>750          | 0.112<br>0.12  | 52<br>70           |              | 0.0028<br>0.0031 | 150<br>160  |
| 6155                             | 5.0         | 6.5            | 6.2 1                | 125               | 2, 500              | 0.200          | 375                | -150         | 0,010            | 350         |
| 6156                             | 5.0         | 14.1           | 5.1 1                | 250               | 3,000               | 0.345          | 800                | -1.80        | 0.010            | 500         |
| 6159                             | 26.5        | 1,25           | 4.5                  | CCS=20<br>ICAS=25 | 600<br>750          | 0.112<br>0.12  | 52<br>70           | -58<br>-62   | 0.0028           | 150<br>160  |
| 6252/AX-9910                     | 12,6<br>6,3 | 0.65<br>1.3    | 8.5 1                | CCS≈20<br>ICAS≈25 | 600<br>750          | 0.100<br>0.150 | 42<br>79           | - 60<br>- 60 | 0.0014<br>0.002  | 250<br>250  |
| 6360                             | 12,6<br>6.3 | 0.410<br>0.820 | 7.5 <sup>1</sup>     | CCS=10<br>ICAS=14 | 300                 | 0,100          | ICAS<br>18.5       | -45          | 0.003            | 200         |
| 6907                             | 12,6<br>6.3 | 0,65<br>1,3    | 8,5 <sup>1</sup>     | CCS=20<br>ICAS=25 | 600<br>750          | 0,100<br>0,150 | 42<br>79           | 60<br>60     | 0.0014<br>0.002  | 250<br>250  |

Grid No. 2 to Grid No. 1
 A glass seal version of 4X250B (ceramic) is available. See tube Type 6979.

| MAX. FREQ.<br>mc/sec | 1          | ERELECTROL<br>ACITANCE - µ                  |                               | DESCRIPTION                                                                                                                                                                                                                                                                    | TYPE NO.                                   |
|----------------------|------------|---------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Full Input Watts     | G-P        | G-F                                         | P-F                           |                                                                                                                                                                                                                                                                                |                                            |
| 88                   | 0.1        | 15                                          | 8.7                           | Radiation cooled all-glass pentode designed for use as an RF amplifier,<br>oscillator, frequency multiplier, and modulator at frequencies up to 88 Mc/S.                                                                                                                       | PE06/40N                                   |
| 500                  | 0.06       | 17.2                                        | 5.0                           | External anode tetrode electrically identical to 4X250B. Anode is water cooled. Designed for applications in which reserve anode dissipation is desirable.                                                                                                                     | 4W300B                                     |
| 500                  | 0.03       | 16                                          | 4.4                           | Forced-air cooled external anode tetrode. Suited for high power mobile applications. Makes an excellent wide-band amplifier for video application.                                                                                                                             | 4X150A                                     |
| 500                  | 0.06       | 15.7                                        | 4.5                           | Forced-air cooled external anode tetrodes with brazed radiator. For air-<br>borne and mobile applications extending into the UHF region. Also excellent<br>for single sideband and pulse applications.                                                                         | 4X250B<br>(ceramic)<br>4X250F<br>(ceramic) |
| 120                  | 0.05       | 12.8                                        | 5.6                           | Forced-air cooled external anode tetrode. Useful as power amplifier in FM, TV and VHF communication transmitters.                                                                                                                                                              | 4X500A                                     |
| 120                  | 0.05       | 10.8                                        | 3.1                           | Radiation and forced-air cooled tetrode. Designed for use as power ampli-<br>fier, modulator or oscillator.                                                                                                                                                                    | 4-125A/4D21                                |
| 1 10                 | 0.12       | 12.7                                        | 4.5                           | Radiation and forced-air cooled tetrode. Designed for use as RF power amplifier, modulator or oscillator.                                                                                                                                                                      | 4-250A/5D22                                |
| 75                   | 0.12       | 12.5                                        | 4.7                           | Radiation and forced-air cooled tetrode. Designed for use as power amplifier,<br>modulator or oscillator at frequencies up to 110 Mc/S.                                                                                                                                        | 4-400A                                     |
| 60                   | 0,2        | 11.0                                        | 7.0                           | Radiation-cooled tetrode, Popular replacement as well as for initial equipment.                                                                                                                                                                                                | 807                                        |
| 250                  | 0.08       | Outp                                        | out 6.7<br>out 2.1<br>i-Pull) | Radiation and/or forced-air-cooled twin-tetrode of original Amperex design<br>as H-F version of conventional 829-B. Makes ideal multiplier, as well as<br>straight amplifier and modulator.                                                                                    | 5894                                       |
| 220<br>75            |            | $\begin{array}{c} 24.0\\ 24.0\end{array}$   | 8.5<br>8.5                    | Water-cooled low drive, H-F tetrode designed for F-M and television trans-<br>mitter power amplifier.                                                                                                                                                                          | 6075/AX-9907                               |
| 220<br>75            | 0.2<br>0.2 | $\begin{array}{c} 24.0 \\ 24.0 \end{array}$ | 8.5<br>8.5                    | Forced-air-cooled external anode version of 6075/AX-9907.                                                                                                                                                                                                                      | 6076/AX-9907-R                             |
| 75                   | 0,24       |                                             | it 25<br>it 7,2               | Radiation and/or forced-air-cooled low drive H-F tetrode for F-M and A-M transmitters. Also ideal in screen modulator stages.                                                                                                                                                  | 6079/AX-9908                               |
| 60                   | 0,1        | 22.5                                        | 11.0                          | Radiation-cooled pentode with low voltage - high current characteristics.<br>Powder glass dish type base with short internal lead connections. Up to 150<br>watts, Class C Telephony, ICAS.                                                                                    | 6083/AX-9908                               |
| 60                   | 0.22       | 13,5                                        | 8.5                           | Beam power tube for use as R-F power amplifier, oscillator, frequency<br>multiplier, AF power amplifier or modulator for mobile and fixed equipment.<br>Anode capable of dissipating 25 watts ICAS.                                                                            | 6146                                       |
| 120                  | 0.05       | 10.8                                        | 3.5                           | Convection and forced-air-cooled tetrode. "Magnisorb" anode and low drive<br>make it excellent R-F amplifier tube in F. M. broadcasting. Improved<br>version of 4-125A/4D21.                                                                                                   | 6155                                       |
| 75                   | 0.12       | 12.7                                        | 4.5                           | Convection and forced-air-cooled tetrode. "Magnisorb" anode and low drive<br>characteristics with "sintered" glass base. Improved version of 4-250A/5D22.                                                                                                                      | 6156                                       |
| 60                   | 0, 22      | 13,5                                        | 8.5                           | Beam power tetrode for use as RF power amplifier, oscillator frequency<br>multiplier, AF power amplifier or modulator for fixed & mobile equipment.                                                                                                                            | 6159                                       |
| 300                  | -          |                                             | out 4.0<br>out 1.3            | Radiation and/or forced-air-cooled twin tetrode of Amperex design. H.F.<br>version of conventional 832A. Makes ideal multiplier as well as straight<br>amplifier and modulator. Useful up to 700 mc. at reduced ratings. Delivers<br>15 watts at 600 mc. under CCS conditions. | 6252/AX-9910                               |
| 200                  | <0,1       |                                             | ut 6.2<br>ut 2.6              | High-gain, twin tetrode for use as Class C amplifier, oscillator, frequency<br>multiplier and modulator, ICAS plate input = 30 watts up to 200 mc. Capable<br>of delivering 18.5 watts output at 200 mc.                                                                       | 6360                                       |
| 300<br>•             | _          |                                             | ut 4.0<br>ut 1.3              | Twin tetrode, radiation-cooled. Special AMPEREX design for mobile service.<br>HF version of conventional 832A. Ideal multiplier and straight amplifier and<br>modulator. Useful up to 1000 mc. Delivers 15 watts at 600 mc, CCS.                                               | 6907                                       |

#### POWER TUBES TETRODES & PENTODES

\_

-

• -

Ŀ

|          |             |               |                  |                   | TYPICAL OPERATION |                |                 |              |                |             |  |  |  |
|----------|-------------|---------------|------------------|-------------------|-------------------|----------------|-----------------|--------------|----------------|-------------|--|--|--|
| TYPE NO. | FILA        | MENT          | Mu               | Max.              |                   | PLATE          |                 | G            | RID            | SCREEN      |  |  |  |
|          | Volts       | Amps          |                  | Diss.<br>Watts    | Volts<br>DC       | Ampş<br>DC     | Output<br>Watts | Yolts<br>DC  | Amps<br>DC     | Volts<br>DC |  |  |  |
| 6939     | 12.6<br>6.3 | 0.375<br>0.75 | 33 1             | CCS=6<br>ICAS=7.5 | 180<br>200        | 0.055<br>0.060 | 5.8<br>7.5      | - 20<br>- 20 | 0.002<br>0.002 | 180<br>200  |  |  |  |
| 6979     | 6.0         | 2.6           | 5 1              | 250               | 2,000             | 0.250          | 410             | -90          | 0.012          | 250         |  |  |  |
| 7377     | 12.6<br>6.3 | 0.3<br>0.6    | 28 1             | 8                 | 250               | 0.035          | 7               | -15          | 0.00075        | 160         |  |  |  |
| 7378     | 6.3         | 3.9           | 5.7 <sup>1</sup> | 100               | 750               | 0.385          | 200             | -90          | 0.007<br>0.010 | 250         |  |  |  |
| 7527     | 5           | 14.1          | 5.1 1            | 400               | 4,000             | 0.270          | 800             | -170         | 0.0095         | 500         |  |  |  |

- -- -

----- ·

-

Grid No. 2 to Grid No. 1

### POWER TUBES

|          |       |       |      |                |             |            | TYPICAL OPERATION |             |            |             |  |  |  |
|----------|-------|-------|------|----------------|-------------|------------|-------------------|-------------|------------|-------------|--|--|--|
| TYPE NO. | FIL   | AMENT | Жu   | Max.<br>Diss.  |             | PLATE      |                   | 0           | RID        | SCR EE      |  |  |  |
|          | Volts | Amps  |      | Watts          | Volts<br>DC | Amps<br>DC | Output<br>Watts   | Volts<br>DC | Amps<br>DC | Volts<br>DC |  |  |  |
| HF-200   | 10,0  | 4     | 18   | 200            | 2, 500      | 0,200      | 380               | -300        | 0.020      | -           |  |  |  |
| HF-201A  | 10.5  | 4     | 18   | 200            | 2, 500      | 0,200      | 380               | -300        | 0.018      | -           |  |  |  |
| HF-300   | 11.0  | 4     | 23   | 200            | 3,000       | 0.250      | 600               |             | 0.028      | -           |  |  |  |
| ZB-3200  | 22.0  | 40.5  | 75   | 2,500          | 8,000       | 0.960      | 5,800             | -400        | 0.150      | -           |  |  |  |
| TBL2/400 | 3.4   | 19    | 33   | 400            | 2,000       | 0.400      | 510               |             | . 120      |             |  |  |  |
| TBL2/500 | 3.4   | 19.0  | 70   | 500            | 2, 500      | 0.38       | 620 + 50          | 70          | 0.16       | -           |  |  |  |
| TBL6/14  | 6.3   | 130   | 17.5 | CCS≃<br>10,000 | 6,000       | 3.3        | 14, 300           | -           | 0.8        | -           |  |  |  |
| TBL12/38 | 8     | 130   | 21   | 15,000         | 12,000      | 4.5        | 39, 300           |             | 0.9        |             |  |  |  |
| TBW6/14  | 6.3   | 130   | 17.5 | 15,000         | 6,000       | 3.3        | 14,300            | -           | 0.8        | -           |  |  |  |
| TBW12/38 | 8     | 130   | 21   | 15,000         | 12,000      | 4.5        | 39, 300           | -           | 0,9        | -           |  |  |  |
| 450-TH   | 7.5   | 12,0  | 38   | 450            | 5,000       | 0.450      | 1,800             | -300        | 0.090      | -           |  |  |  |
| 450-TL   | 7.5   | 12.0  | 18   | 450            | 5,000       | 0.450      | 1,800             | -500        | 0.054      | -           |  |  |  |
| 504R     | 7.5   | 24    | 17   | 1,000          | 3,500       | 0.860      | 2,175             | - 750       | 0.150      | -           |  |  |  |
| 833-A    | 10.0  | 10.0  | 35   | 400            | 4,000       | 0.450      | 1,440             | - 200       | 0.075      | -           |  |  |  |
| 849      | 11.0  | 5     | 19   | 500            | 2, 500      | 0.350      | 630               | - 250       | 0.013      |             |  |  |  |
| 849-A    | 11.0  | 7.7   | 19   | 500            | 3,000       | 0.500      | 1,200             | ~500        | 0,100      |             |  |  |  |
| 880      | 12.6  | 315   | 20   | 20,000         | 10,000      | 6,0        | 40,000            | -1200       | 0.800      | -           |  |  |  |
| 889-A    | 11.0  | 125   | 21   | 5,000          | 7, 500      | 2.0        | 10,000            | -800        | 0.240      |             |  |  |  |
| 889-RA   | 11.0  | 125   | 21   | 5,000          | 7, 500      | 2.0        | 10,000            | - 800       | 0.240      | -           |  |  |  |
| 891      | 22.0  | 60.0  | 8    | 6,000          | 10,000      | 1.45       | 10,000            | -3000       | 0,150      | -           |  |  |  |

| MAX. FREQ.<br>mc/sec |       | RELECTRO | -                  | DESCRIPTION                                                                                                                                                                                          | TYPE NO. |
|----------------------|-------|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Foll Input Watts     | G-P   | G-F      | P.F                |                                                                                                                                                                                                      |          |
| 500                  | -     |          | out 3.8<br>out 0.8 | High-gain twin tetrode for use as Class C amplifier, oscillator, frequency multiplier and modulator. ICAS plate input = 14 watts up to 500 mc. Capable of delivering 7.5 watts output at 500 mc.     | 6939     |
| 250                  | 0.03  | 15.7     | 4.5                | Forced-air cooled external anode tetrode. Brazed radiator. Interchangeable with 4X150A where higher plate dissipation is required.                                                                   | 6979     |
| 960                  | 0,145 | 4.5      | 1,35               | Radiation cooled twin tetrode designed for push-pull Class C operation at frequencies up to 1000 Mc.                                                                                                 | 7377     |
| 30                   | 0.9   | -        |                    | Radiation and convection cooled all-glass beam-power tetrode especially designed for use as an AF and RF amplifier, oscillator, and frequency multiplier for operation at frequencies up to 30 Mc/S. | 7378     |
| 75                   | 0,12  | 12.7     | 4.9                | All glass tetrode. Designed for amplifier, oscillator, or modulator service extending in the VHF region at frequencies up to 110 Mc/S.                                                               | 7527     |

| MAX. FREQ.<br>mc/sec |      | ERELECTROD<br>ACITANCE - μ |      | DESCRIPTION                                                                                                                                                                                                                                        | TYPE NO. |
|----------------------|------|----------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Full Input Watts     | G-P  | G-F                        | P-F  |                                                                                                                                                                                                                                                    |          |
| 30                   | 6.9  | 6,2                        | 1.2  | Radiation-cooled triode. Original Amperex design and ruggedness make it ideally suited for R-F ' ting as well as for broadcasters and amateurs.                                                                                                    | HF-200   |
| 30                   | 7.0  | 8,8                        | 1.2  | Radiation-cooled triode, similar to HF-200, with different tube capacitance.<br>Low voltage, high current characteristics.                                                                                                                         | HF-201A  |
| 20                   | 7,0  | 6.0                        | 1.0  | Radiation-cooled triode. Ideally suited for initial equipment and replacement<br>for competitive types. Widely used in R-F heating applications, many com-<br>mercial, police, and amateur transmitters.                                           | HF-300   |
| 10                   | 10.0 | 13.0                       | 2.0  | Forced-air-cooled triode. Original Amperex design. 5.8 kw output at 10 mc with zero bias. Used principally in broadcasting.                                                                                                                        | ZB-3200  |
| 800                  | 6.5  | 11.5                       | 0.12 | Forced-air cooled, coaxial transmitting triode with a ceramic envelope de-<br>signed for use in HF amplifier, oscillator, or frequency multiplier operation<br>at frequencies up to 900 Mc/S.                                                      | TBL2/400 |
| 400                  | 3.8  | 11                         | 0.05 | Forced-air cooled transmitting triode with ceramic envelope and coaxial terminal arrangement can be used as "plug-in" in coaxial circuits. Designed for use as an RF amplifier, oscillator or frequency multiplier at frequencies up to 1000 Mc/S. | TBL2/500 |
| 30                   | 40   | 40                         | 1.0  | Forced-air cooled external anode triode. Designed for use as an oscillator in industrial equipment.                                                                                                                                                | TBL6/14  |
| 30                   | 23.5 | 42.5                       | 0.9  | Same as for TBL6/14.                                                                                                                                                                                                                               | TBL12/38 |
| 30                   | 40   | 40                         | 1.0  | Water cooled version of TBL6/14.                                                                                                                                                                                                                   | TBW6/14  |
| 30                   | 23.5 | 42.5                       | 0.9  | Water cooled version of TBL12/38.                                                                                                                                                                                                                  | TBW12/38 |
| 40                   | 5.0  | 8.8                        | 0.8  | Radiation-cooled triode. Very popular in A-M broadcast stations and Govern-<br>ment transmitters. Also used in R-F heating applications.                                                                                                           | 450-TH   |
| 40                   | 4.5  | 6.8                        | 0.8  | Radiation-cooled, medium mu version of 450-TH.                                                                                                                                                                                                     | 450-TL   |
| 150                  | 10.5 | 14.0                       | 1.3  | Forced-air cooled triode similar to AMPEREX 501R minus flexible leads.<br>Interchangeable with 7C26 with very minor circuit changes.                                                                                                               | 504R     |
| 30                   | 6.3  | 12.3                       | 8.5  | Radiation and forced-air cooled triode used widely in A-M transmitters and also some R-F heating applications. (Refer to AX-9902 data).                                                                                                            | 833-A    |
| 3                    | 33.0 | 11.0                       | 2.0  | Radiation and forced-air-cooled triode. Still popular as replacement in some A-M broadcast transmitters and R-F heating.                                                                                                                           | 849      |
| 20                   | 11.5 | 14.0                       | 1.8  | Same information as above. Interelectrode capacitance different.                                                                                                                                                                                   | 849-A    |
| 25                   | 26.0 | 29.0                       | 2.6  | Water-cooled triode. This rugged "powerhouse" very popular in broad-<br>casting stations and ideal for R-F heating applications.                                                                                                                   | 880      |
| 50                   | 17.8 | 19,5                       | 3,0  | Water-cooled triode. Another rugged high power R-F tube for broadcasting stations and R-F heating applications.                                                                                                                                    | 889-A    |
| 25                   | 20.7 | 19.5                       | 3.0  | Forced-air-cooled triode version of 889-A, with improved radiator design.                                                                                                                                                                          | 889-RA   |
| 1.6                  | 28.0 | 16.0                       | 3.0  | Water-cooled triode. This is one of the tubes that built Amperex reputation.<br>Used in 5 and 10 kw broadcasting stations. Also popular in R-F heating.                                                                                            | 891      |

.

### POWER TUBES

Г

|                | E11 A    | MENT  |      | Max.                      |                |                | TYPICAL OPER      | ATION        |                | -           |
|----------------|----------|-------|------|---------------------------|----------------|----------------|-------------------|--------------|----------------|-------------|
| TYPE NO.       | PILA     | MEN I | Mu   | Diss.                     |                | PLATE          |                   |              | RID            | SCREEN      |
|                | Volts    | Amps  |      | Watts                     | Valts<br>DC    | Amps<br>DC     | Output<br>Watts   | Volts<br>DC  | Amps<br>DC     | Volts<br>DC |
| 891-R          | 22.0     | 60.0  | 8    | 4,000                     | 10,000         | 1.4            | 10,000            | -2000        | 0,150          | -           |
| 892            | 22.0     | 60.0  | 50   | 10,000                    | 12,000         | 1.55           | 14, 250           | -1600        | 0,165          |             |
| 892-R          | 22.0     | 60.0  | 50   | 4,000                     | 10,000         | 1.40           | 10,500            | -1300        | 0,160          |             |
| 5604           | 11.0     | 176.0 | 19   | 10,000                    | 12,000         | 2.5            | 22, 500           | -1170        | 0.220          | -           |
| 5619           | 11.0     | 176.0 | 19   | 20,000                    | 12,000         | 2.5            | 22, 500           | -1170        | 0.220          | - 1         |
| 5658           | 12.0     | 290.0 | 20,5 | 10,000                    | 10,000         | 3.8            | 28,000            | -870         | 0,550          | -           |
| 5666           | 11.0     | 120.0 | 21   | 12, 500                   | 9,000          | 2.0            | 12, 200           | -750         | 0.210          |             |
| 5667           | 11.0     | 120.0 | 21   | 7,500                     | 9,000          | 2.0            | 12, 200           | -750         | 0.210          | -           |
| 5759/501-R     | 7.5      | 24    | 17   | 1,000                     | 3, 500         | 0.870          | 2, 175            | -250         | 0,133          |             |
| 5760/502       | 7.5      | 24    | 17   | 1,500                     | 3, 500         | 0.860          | 2, 175            | -450         | 0.150          |             |
| 5761/502-R     | 7.5      | 24    | 17   | 1,500                     | 3, 500         | 3,860          | 9 175             | 450          | 0.150          |             |
| 5771           | 7.5      | 170   | 20   | 22, 500                   | 12,500         | 4.8            | 2, 175<br>44, 000 | -450<br>-630 | 0.150          | -           |
|                |          |       |      |                           | ,              |                | 11,000            | -000         | 0.100          | -           |
| 5866/AX~9900   | 6.3      | 5,4   | 25   | 135                       | 2, 500         | 0.200          | 390               | -300         | 0.045          | -           |
| 5867/AX-9901   | 5,0      | 14.1  | 25   | 250                       | 3,000          | 0.363          | 840               | - 250        | 0,069          | -           |
| 5868/AX-9902   | 10,0     | 10,0  | 27   | 450                       | 4,000          | 0.475          | 1, 673            | -350         | 0.100          | -           |
| 5923/AX-9904   | 12.6     | 33.0  | 32   | 6,000                     | 6,000          | 1.5            | 6, 900            | -400         | 0.310          |             |
| 5924/AX-9904-R | 12,6     | 33.0  | 32   | 5,000                     | 6,000          | 1,5            | 6,900             | -400         | 0.310          |             |
| 5924A          | 12.6     | 33.0  | 32   |                           | CLASS          | B, TV SERVICE, |                   |              |                | -           |
|                | <u> </u> |       |      | 6,000                     | 5,000          | 1.90           | 6, 250            | -140         | 0.350          |             |
| 6246/508       | 30       | 80    | 28   | 25,000                    | 15,000         | 3.75           | 40,000            | -900         | 0.420          | -           |
| 6333           | 22,0     | 60.0  | 50   | 10,000                    | 12,000         | 1.55           | 14, 250           | -1600        | 0.165          | -           |
| 6445           | 22.0     | 60.0  | 50   | 5,000                     | 10,000         | 1.40           | 10,500            | -1300        | 0.160          |             |
| 6446           | 22,0     | 60.0  | 50   | 20,000                    | 15,000         | 2.0            | 20,000            | -1250        | 0,250          | -           |
| 6447           | 22.0     | 60.0  | 50   | 10,000                    | 12,000         | 2,0            | 17, 500           | -500         | 0.230          |             |
| 6756           | 7.5      | 100   | 13.5 | 20,000                    | 12,000         | 3.5            | 30, 640           | -1220        | 0.230          | -           |
| 6757           | 7.5      | 100   | 13.5 | 15,000                    | 12,000         | 3.5            | 30, 640           | -1220        | 0.210          |             |
| 6800           | 7.5      | 100   | 19.5 | 20,000                    | 12,500         | 3.5            | 33,000            | -1220        | 0.210          | -           |
| 6801           | 7.5      | 107   | 19,5 | 10,000                    | 12, 500        | 3.0            | 28,000            | -1200        | 0.43           |             |
| 6960           | 12.6     | 33    | 32   | 6,000                     | 6,500          | 2.0            | 10,000            | -1200        | 0.43           | -           |
| 6961           | 12.6     | 33    | 32   | 6,000                     | 6, 500         | 2.0            | 10,000            | -450         | 0,600          |             |
| 7004           | 3,4      | 19.0  | 32   | 300                       | 2, 500         | 0.260          | 45                | -200         | 0.100          |             |
| 7092           | 6,3      | 32.5  |      |                           |                |                |                   |              |                |             |
|                | 0,0      | 04.0  | 22   | 800<br>1,300 <sup>2</sup> | 6,000<br>6,000 | 0.600<br>0.950 | 2, 840<br>4, 400  | -450<br>-475 | 0.150<br>0.190 | -           |
| 7237           | 12.6     | 33    | 32   | 6,000                     | 6, 500         | 2.0            | 10,000            | -450         | 0.600          | -           |
|                |          |       |      |                           |                |                |                   |              |                |             |

1 Derated for 155 watts output

.

2 50% duty cycle

6

.

| MAX. FREQ.<br>mc/sec         |      | ERELECTROL<br>Acitance - µ |               | DESCRIPTION                                                                                                                                                                                                                                                                                                   | TYPE NO.      |
|------------------------------|------|----------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Full Input Watts             | G-P  | G-F                        | P-F           |                                                                                                                                                                                                                                                                                                               | TIFE NO.      |
| 1.6                          | 30.0 | 16.0                       | 3.0           | Forced-air-cooled version of 891.                                                                                                                                                                                                                                                                             | 891-R         |
| 1.6                          | 32.0 | 17.0                       | 1.8           | Water-cooled triode. Widely used all over the world in broadcasting stations.<br>Also another ideal R-F heating tube. Also see 6333 improved version.                                                                                                                                                         | 892           |
| 1.6                          | 32.0 | 17.0                       | 2.0           | Forced-air-cooled version of 892. Also see 6445 improved version.                                                                                                                                                                                                                                             | 892-R         |
| 22.5                         | 25.0 | 30.0                       | 1.25          | Forced-air-cocled triode. Ideal oscillator for R-F heating and broadcast service.                                                                                                                                                                                                                             | 5604          |
| 22.5                         | 24.0 | 30.0                       | 1,0           | Water-cooled version of 5604.                                                                                                                                                                                                                                                                                 | 5619          |
| 15                           | 24.0 | 39.0                       | 2.5           | Industrial water-cooled version of type 880.                                                                                                                                                                                                                                                                  | 5658          |
| 22.5                         | 18.0 | 23.5                       | 2.6           | Water-cooled triode. Heavy duty version of 889-A for industrial $R-F$ heating application.                                                                                                                                                                                                                    | 5666          |
| 22.5                         | 18.5 | 23.5                       | 3.0           | Forced-air cooled triode. Heavy duty version of 889-RA for industrial R-F heating application.                                                                                                                                                                                                                | 5667          |
| 150                          | 10.0 | 14.0                       | 1,3           | Forced-air cooled triode. Low voltage, high current characteristics. Ideal for R-F heating. Has a thoriated-tungsten filament.                                                                                                                                                                                | 5759/501-R    |
| 150                          | 10.0 | 14.0                       | 1.3           | Water-cooled triode. Thoriated-tungsten filament. Compactness and low voltage, high current make it ideally suitable for R-F heating.                                                                                                                                                                         | 5760/502      |
| 150                          | 10.0 | 14.0                       | 1,3           | Forced-air version of 502.                                                                                                                                                                                                                                                                                    | 5761/502-R    |
| 25                           | 24.5 | 47.0                       | 3.0           | Improved version of 880 with thoriated tungsten filament for high emission<br>capability and a saving of 70% in filament power. Has rugged Kovar grid<br>and filament seals. For industrial & communication application.                                                                                      | 5771          |
| 150                          | 5.5  | 5.8                        | 0.1           | Radiation and/or forced-air-cooled H. F. triode of original Amperex design.<br>Powdered glass dish-type base with extremely low lead inductance makes<br>this tube ideally suited for almost any H-F application.                                                                                             | 5866/AX-9900  |
| 100                          | 5.0  | 6.3                        | 0.16          | Radiation and/or forced-air-cooled H. F. low drive triode of original Amperex design.                                                                                                                                                                                                                         | 5867/AX-9901  |
| 100                          | 8,0  | 11.0                       | 0,35          | Radiation and/or forced-air-cooled H-F triode with rugged 100 watt filament.<br>Of original Amperex design, for all heavy duty R-F applications.                                                                                                                                                              | 5868/AX-9902  |
| 75                           | 11.0 | 16.0                       | 0.3           | Water-cooled low drive H. F. triode. Rugged for H. F. heating application.                                                                                                                                                                                                                                    | 5923/AX-9904  |
| 75                           | 11.0 | 16.0                       | 0.3           | Forced-air cooled version of type 5923.                                                                                                                                                                                                                                                                       | 5924/AX-9904- |
| 75 Full Input<br>220 Derated | 11.0 | 16.0                       | 0.3           | Forced-air cooled triode for FM & TV transmitters. Brazed radiator shell & external surfaces silverplated throughout.                                                                                                                                                                                         | 5924A         |
| 40                           | 17.0 | 26,0                       | 2.5           | Water-cooled triode. 40 kw output makes it ideally suited as high power R-F heating oscillator and R-F amplifier in A-M transmitters.                                                                                                                                                                         | 6246/508      |
| 5                            | 32.0 | 17.0                       | 1,8           | Improved ruggedized version of standard 892 with spiral filament, Kovar<br>seals, powdered glass stem. Grid side arm deleted and replaced with Kovar<br>ring. Excellent industrial tube for heavy duty, also communication.                                                                                   | 6333          |
| 5                            | 32.0 | 17.0                       | 1.8           | Forced-air-cooled version of type 8333. See above.                                                                                                                                                                                                                                                            | 6445          |
| 5                            | 32.0 | 17.0                       | 1.8           | Improved, ruggedized, heavy-wall version of type 892. Has powdered glass<br>stem, Kovar grid ring, Kovar anode seal, stronger spiral filament giving<br>more uniform heat distribution over anode surface. Also has strong conical,<br>low-inductance grid support. An unusual industrial tube without equal. | 6446          |
| 5                            | 32.0 | 17.0                       | 1.8           | Forced-air-cooled version of type 6446. See above.                                                                                                                                                                                                                                                            | 6447          |
| 30                           | 47.6 | 25.1                       | 1.5           | Water-cooled triode with special characteristics as a low impedance, R.F.<br>industrial oscillator. Particularly suited to induction and dielectric heating<br>applications.                                                                                                                                  | 6756          |
| 30                           | 50.0 | 25.1                       | 2.0           | Forced-air-cooled version of type 6756.                                                                                                                                                                                                                                                                       | 6757          |
| 22, 5                        | 26.0 | 25.0                       | 1.0           | Thoriated hingsten filamentary triode. 20 kw anode dissipation. Water-<br>cooled. High power RF amplifier and industrial oscillator.                                                                                                                                                                          | 6800          |
| 22.5                         | 27.0 | 25.0                       | 1.25          | Same as 6800 except 10 kw anode dissipation. Forced-air-cooled.                                                                                                                                                                                                                                               | 6801          |
| 55                           | 11.0 | 16.0                       | 0.3           | Industrial water-cooled triode with large overload capacity on grid and plate currents. Suitable for 7.5 kw induction and dielectric heaters and 10 kw plastic sealers.                                                                                                                                       | 6960          |
| 55                           | 11.0 | 16.0                       | 0.3           | Forced-air cooled version of 6960. Suitable for 7.5 kw induction and di-<br>electric heaters and 10 kw plastic sealers.                                                                                                                                                                                       | 6961          |
| 175<br>900 <sup>1</sup>      | 4.0  | 9.0                        | 0, 12<br>Max. | Compact, coaxial transmitting triode. Forced-air-cooled. UHF oscillator, amplifier and frequency multiplier. Useful up to 900 mc.                                                                                                                                                                             | 7004          |
| 50                           | 6.2  | 10.5                       | 0,25          | Radiation cooled triode for industrial oscillator and amplifier applications.<br>Rugged construction: Graphite anode with unusual overload capability.<br>Thoriated tungsten filament.                                                                                                                        | 7092          |
| 55                           | 11.0 | 16.0                       | 0.3           | Identical with Amperex Type 6961 except with radiator design intended for interchangeability with competitive types 6366 and 6367.                                                                                                                                                                            | 7237          |
| 110                          | 11   | 16                         | 0.3           | Forced air cooled triode designed for nse in broadcast FM & TV communi-<br>cation transmitters. It will replace the 5762/7C24 in most applications.                                                                                                                                                           | 7459          |

#### THYRATRONS-HYDROGEN

| TYPE NO.     | Peak Forward<br>Anode Voltago<br>Max. | Peak Anode<br>Current<br>Max. (Amps) | Av. Anode<br>Current<br>Max. (mA) | Pulse<br>Width<br>Max. |
|--------------|---------------------------------------|--------------------------------------|-----------------------------------|------------------------|
| 5949/1907    | 25,000                                | 500                                  | 500<br>(absolute value)           | 2 μsec                 |
| 6268/AX-9911 | 8,000                                 | 90                                   | 100                               | 2 µ sec                |
| 6279/AX-9912 | 16,000                                | 325                                  | 200                               | 2 μ sec                |

#### THYRATRONS-MERCURY VAPOR & INERT GAS-TRIODES & TETRODES

|               |              | 'er or       | Filament                  | <i></i>                 | Peak             | Voltage               | Anode        | Current         |               | lonization<br>Time |
|---------------|--------------|--------------|---------------------------|-------------------------|------------------|-----------------------|--------------|-----------------|---------------|--------------------|
| TYPE NO.      |              |              | Heating<br>Time<br>(soc.) | Tube<br>Drop<br>(Volts) | Forward<br>Volts | -<br>Inverse<br>Volts | Peak<br>Amps | Average<br>Amps | Grid<br>Volts | μ sec.             |
| AX-105        | Volta<br>5.0 | 4mps<br>10.0 | 300                       | 16                      | 10000            | 10000                 | 8.0          | 4.0             | -500          | 10                 |
|               | · · · · ·    | 16.0         | 300                       | 10                      | 1500             | 2500                  | 80,0         | 12.5            | -300          | 10                 |
| AX-255        | 5.0          |              |                           |                         |                  |                       |              | 25.0            | -300          | 10                 |
| AX-260        | 5.0          | 25.0         | 600                       | 10                      | 1500             | 2500                  | 160.0        |                 |               |                    |
| 2D21          | 6.3          | 0.6          | 10                        | 8                       | 650              | 1300                  | 0,5          | 0.1             | -100          | 0.5                |
| 1701          | 2.5          | 5.0          | 5                         | 16                      | 2500             | 5000                  | 1.0          | 0.5             | -500          | 10                 |
| 5544          | 2.5          | 12.0         | 60                        | 16                      | 1500             | 1500                  | 40.0         | 3.2             | -250          | -                  |
| 5545          | 2.5          | 21.0         | 60                        | 16                      | 1500             | 1500                  | 80.0         | 6.4             | -250          | -                  |
| 5559          | 5.0          | 4.5          | 300                       | 16                      | 1000             | 1500                  | 15.0         | 2.5             | -500          | 10                 |
| 5560/FG95     | 5.0          | 4.5          | 300                       | 16                      | 1000             | 1000                  | 15.0         | 2.5             | -1000         | 10                 |
| 5632/C3J      | 2.5          | 8.5          | 60                        | 10                      | 900              | 1250                  | 30.0         | 2,5             | -300          | 10                 |
| 5684/C3JA     | 2.5          | 8.5          | 60                        | 10                      | 1000             | 1 250                 | 30.0         | 2.5             | -300          | 10                 |
| 5727          | 6.3          | 0.6          | 10                        | 8                       | 650              | 1300                  | 0.5          | 0.1             | -100          | 0.5                |
| 5869/AGR-9950 | 5.0          | 6.5          | 120                       | 15                      | 13000            | 13000                 | 4.0          | 1.0             | -100          | 10                 |
| 5870/AGR-9951 | 5.0          | 14.0         | 120                       | 12                      | 27000            | 27000                 | 10.0         | 2.5             | -100          | 10                 |
| 6786          | 5.0          | 15-20        | 600                       | 12                      | 15000            | 15000                 | 45.0         | 10-15           |               | -                  |

#### ENTERTAINMENT & AUDIO TUBES \*

ے `

|           |                                                           |                     | TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS |        |              |                 |                 |                                                                                                                                |                        |                        |           |  |  |
|-----------|-----------------------------------------------------------|---------------------|--------------------------------------------------|--------|--------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------|--|--|
| TYPE NO.  | FILA                                                      | MENT                |                                                  | Appl   | ied Voltages |                 | Plate           | Screen                                                                                                                         | Amplifi-               | Plate                  | Transcon- |  |  |
|           | Volts         Amps           2ER5         2.1         0.6 | Circuit Application | Plate                                            | Screen | Grid         | Current<br>(mA) | Current<br>(mA) | cation<br>Factor                                                                                                               | Resistance<br>(K ohms) | ductance<br>(micromhos |           |  |  |
| 2ER5      | 2.1                                                       | 0.6                 | RF Amplifier                                     | 200    | 0            | -1.2            | 10              | 0                                                                                                                              | 80                     | 8                      | 10,500    |  |  |
| 3ER5      | 2.8                                                       | 0.45                |                                                  |        |              |                 | 1               |                                                                                                                                |                        |                        |           |  |  |
| 4ES8      | 4.2                                                       | 0.6                 | Low Noise Cascode RF<br>Amplifier                | 90     | -            | -1.2            | 15              | -                                                                                                                              | 34                     | 2,72                   | 12, 500   |  |  |
| 5AR4/GZ34 | 5.0                                                       | 1.9                 | Full Wave Rectifier                              |        |              |                 |                 | AC Supply (Plate-to-Plate) Voltage (R<br>DC Output Current (max.)<br>Max. Capacity Condenser Input Filter<br>DC Output Voltage |                        |                        |           |  |  |

\* For additional entertainment rectifiers see RECTIFIERS - DIODES section

| DESCRIPTION<br>These tubes are used as drivers for pulsing magnetrons and other oscillators and as high speed switches. Hydrogen-filled,<br>they have extremely low de-ionization time. They are zero bias tubes, triggered by a positive grid pulse. Maximum pulse<br>repetition frequency (prf in pulses per second) will depend on the peak forward anode voltage (epy in volts) according to<br>formula: $(epy)^2 x (prf) = 2.6 x 10^{11} max$ . | TYPE NO.     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Especially designed for use in pulse modulator circuits of microwave radar systems.                                                                                                                                                                                                                                                                                                                                                                  | 5949/1907    |
| Completely interchangeable with 4C35 in every respect except that it has self-contained source of hydrogen providing life expectancy of minimum 1000 hours.                                                                                                                                                                                                                                                                                          | 6268/AX-9911 |
| Completely interchangeable with 5C22 in every respect except that it has self-contained source of hydrogen providing life expectancy of minimum 1000 hours.                                                                                                                                                                                                                                                                                          | 6279/AX-9912 |

| Deion-<br>ization<br>Time<br>µ sec. | Candensed Mercury<br>Tomp. Range - °C | DESCRIPTION                                                                                                                                                                                                                           | TYPE NO.      |
|-------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1000                                | $+40^{\circ}$ to $+80^{\circ}$        | Radiation-cooled mercury-vapor thyratron-tetrode.                                                                                                                                                                                     | AX-105        |
| 1000                                | +35° to +75°                          | Heavy-duty, mercury vapor thyratron for motor control and A.C. welder control.                                                                                                                                                        | AX-255        |
| 1000                                | +35° to +75°                          | Heavy-duty, mercury vapor thyratron for motor control and A.C. welder control.                                                                                                                                                        | AX-260        |
| -                                   | -                                     | High control ratio, temperature independent Thyratron with high circuit sensitivity. Inert gas filled. Negative control characteristics.                                                                                              | 2D21          |
| 1000                                | +30° to +80°                          | Radiation-cooled mercury-vapor low voltage thyratron. Similar in structure to 866-A,                                                                                                                                                  | 1701          |
| 400                                 | -                                     | Xenon filled thyratron with reliable operation over wide temperature range. For electronic control of D.C. motor speed, regulation of current and voltage, connting and sorting devices and electronic switching machines.            | 5544          |
| 500                                 |                                       | Same as for type 5544 above.                                                                                                                                                                                                          | 5545          |
| 1000                                | +40° to +75°                          | Indirectly heated, mercury-vapor triode with negative control characteristics.                                                                                                                                                        | 5559          |
| 1000                                | +40° to +80°                          | Four electrode, mercury vapor thyratron with negative control characteristics. Designed<br>for applications where the available grid power is very small and where it is desired to<br>actuate the grid from a high impedance source. | 5560/FG95     |
| 1000                                | -                                     | Xenon filled, three-electrode thyratron with negative-control characteristics for reliable operation over wide temperature range. Especially suitable for control relay service, motor control, and ignitor firing service.           | 5632/C3J      |
| 1000                                | -                                     | Xenon filled, three-electrode thyratron with negative-control characteristics for reliable operation over wide temperature range. Especially suitable for control relay service, motor control, and ignitor firing service.           | 5684/C3JA     |
| 35 min.                             | -                                     | Ruggedized version of 2D21. Particularly suitable for mobile and aircraft operation where mechanical strength and reliability are important. Designed for relay, servo control applications, etc.                                     | 5727          |
| 250                                 | +25° to +55°                          | Radiation-cooled mercury-vapor thyratron. Oxide coated filament. Used for stepless con-<br>trol of voltage output and D-C motor control.                                                                                              | 5869/AGR-9950 |
| 250                                 | +30° to +45°                          | Same as above for type 5869/AGR-9950.                                                                                                                                                                                                 | 5870/AGR-9951 |
| _                                   | +25° to +55°                          | High voltage, grid controlled mercury vapor thyratron. For industrial RF generators and transmitting equipment.                                                                                                                       | 6786          |

| Max. Pawer Out-<br>put - 2 Tubes,<br>Push-Pull Class B | Load<br>Resistance<br>(K ohms) | Cut-Off<br>Bias<br>(volts) | DESCRIPTION                                                                                                                                                                                                               |              |  |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| -                                                      | -                              | -                          | High gain remote cut-off tetrodes designed for use as an amplifier, oscillator, or mixer<br>in TV tuners. The screen grid is primarily a shield designed to reduce grid-to-plate<br>capacitance. Frame grid construction. | 2ER5<br>3ER5 |  |  |  |  |  |  |
| -                                                      | -                              | -                          | High performance frame-grid twin-triode with remote cut-off characteristics. Designed for use as a low noise cascode tube for 600 mA series string operation in premium TV tuners.                                        | 4ES8         |  |  |  |  |  |  |
| = 2 X 550<br>= 250 mA<br>= 60 $\mu$ f<br>= 610 volt:   |                                |                            | Indirectly heated, full-wave rectifier with 5.0 volt, 1.9 amp heater and 250 mA output capacity. Octal base.                                                                                                              | 5AR4/GZ34    |  |  |  |  |  |  |

#### **ENTERTAINMENT & AUDIO TUBES**

| TYPE NO. FILAMENT |                                           | AMENI        |                                                                                         |                |                         | TYPICAL |                          |                           |                                                                                                                                   |                                       | Transform                            |  |  |
|-------------------|-------------------------------------------|--------------|-----------------------------------------------------------------------------------------|----------------|-------------------------|---------|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--|--|
|                   | Volts                                     | Amps         | Circuit Application                                                                     | App:<br>Plate  | lied Voltages<br>Screen | Grid    | Plate<br>Current<br>(mA) | Screen<br>Current<br>(mA) | Amplifi-<br>cation<br>Factor                                                                                                      | Plate<br>Resistance<br>(Kohms)        | Transcon-<br>ductance<br>(micromhos) |  |  |
| 6AQ8/ECC85        | 6, 3                                      | 0.435        | RF Amplifier and Mixer                                                                  | RF Amp<br>230  | -                       | -2,0    | 10.0                     | -                         | 57                                                                                                                                | 9.7                                   | 6,000                                |  |  |
|                   |                                           |              |                                                                                         | Mixer<br>190   |                         | 1       | 5.2                      |                           | 57                                                                                                                                | 2.2                                   | 2, 300                               |  |  |
| 6AU6              | 6.3                                       | 0.3          | RF-IF Amplifier Triode                                                                  | 250            | Plate                   | -       | 12.2                     | -                         | 36                                                                                                                                | -                                     | 4, 800                               |  |  |
|                   |                                           |              | RF-IF Amplifier Pentode                                                                 | 250            | 150                     | 6.5     | 10.6                     | 4.3                       | 36                                                                                                                                | 1000                                  | 5, 200                               |  |  |
| 6BL8/ECF80        | 6.3                                       | 0.43         | AM/FM Oscillator                                                                        | 170            | 170                     | - 2     | 10                       | 2.8                       | 47 3                                                                                                                              | 400                                   | 6, 200                               |  |  |
| 6BM8/ECL82        | 6,3                                       | 0.78         | Mixer<br>Voltage Amplifier &                                                            | 100<br>V. Amp. |                         | -2      | 14<br>3.5                |                           | 20                                                                                                                                | 4                                     | 5,000                                |  |  |
| 02M0 20102        | 0.0                                       | 0.10         | Power Output Tube                                                                       | 100<br>Output  | - 100                   | -6.0    | 26                       | - 5.0                     |                                                                                                                                   | 28.0                                  | 2, 500                               |  |  |
| 6D()5/21.04       |                                           | 0.76         |                                                                                         | 100            |                         |         |                          |                           |                                                                                                                                   |                                       |                                      |  |  |
| 6BQ5/EL84         | 6.3                                       | 0.76         | Power Output Tube                                                                       | 300            | 300                     | -14.5   | 2 x 46                   | 2 x 11                    | -                                                                                                                                 | -                                     | 11, 300                              |  |  |
| 6CA4/EZ81         | 6.3                                       | 1.0          | Full Wave Rectifier                                                                     |                |                         |         |                          | DC Outp<br>Max, Ca        | ut Current                                                                                                                        | -Plate) Vol<br>(max.)<br>denser Input | • • •                                |  |  |
| 6CA7/EL34         | 6, 3                                      | 1.5          | Power Output Tube                                                                       | 800            | 400                     | -39     | 2 x 91                   | 2 x 19                    |                                                                                                                                   | -                                     | 11, 300                              |  |  |
| 6CW5/EL86         | 6.3                                       | 0.76         | Medium Power Hi-Fi<br>Amplifiers                                                        | 250            | 200                     | -18.5   | 70                       | 170                       | 8                                                                                                                                 | 23                                    | 10,000                               |  |  |
| 6DCB/EBF89        | 6.3                                       | 0.30         | AM detector and AGC                                                                     | 200            |                         | -       | 0,8                      |                           |                                                                                                                                   | -                                     | -                                    |  |  |
|                   |                                           |              | RF or IF Amplifier                                                                      | 250            | 100                     | 2.0     | 9                        | 2.7                       | 20                                                                                                                                | 1000                                  | 3, 800                               |  |  |
| 6DJ8/ECC88        | 6.3                                       | 0.365        | Cascode RF Amplifier<br>Mixer                                                           | 90             | -                       | -1.2    | 15.0                     | -                         | 33.                                                                                                                               | 2.65                                  | 12, 500                              |  |  |
| 6DX8/ECL84        | 6.3                                       | 0.72         | Video Output Tube -<br>Pentode                                                          |                | 220                     | -       | 18                       | 3.1                       | -                                                                                                                                 | 3                                     | 9, 700                               |  |  |
|                   |                                           |              | Keyed AGC, Sync-Sep-<br>aration, Sync-Amplifi-<br>cation, Noise Sup-<br>pression Triode | 200            | ; <b>-</b>              | 1.7     | 3                        | -                         | 65                                                                                                                                |                                       | 4,000                                |  |  |
| 6EH7/EF183        | 6.3                                       | 0.3          | IF Amplifier                                                                            | 190/200        | 90                      | -2      | 12                       | 4.5                       | -                                                                                                                                 | 500                                   | 12, 500                              |  |  |
| 6EJ7/EF184        | 6.3                                       | 0.3          | IF Amplifier                                                                            | 200            | 200                     | -2.5    | 10                       | 4.1                       | 60                                                                                                                                | 350                                   | 15,000                               |  |  |
| 6ER5              | 6.3                                       | 0.18         | RF Amplifier                                                                            | 200            | 0                       | -1.2    | 10                       | 0                         | 80                                                                                                                                | 8                                     | 10,500                               |  |  |
| 6E58/ECC189       | 6, 3                                      | 0.365        | Cascode AGC controlled<br>RF amplifier                                                  | 90             | -                       | -1,2    | 15.0                     | ••                        | 33                                                                                                                                | 2,65                                  | 12, 500                              |  |  |
| 6GM8/ECC86        | 6.3                                       | 0.33         | RF Amplifier                                                                            | 25             | -                       | 0       | 7.5                      | -                         | 14                                                                                                                                | 2,1                                   | 7, 800                               |  |  |
|                   |                                           |              | Mixer                                                                                   | 25             | -                       | -       | 2.6                      | -                         | -                                                                                                                                 | 0.5                                   | 2, 000                               |  |  |
| 6V4/EZ80          | 6.3                                       | 0.6          | Full Wave Rectifier                                                                     |                |                         | L       | L                        | DC Outp<br>Max, Ca        | AC Supply (Plate-to-Plate) Voltage (RMS)<br>DC Output Current (max.)<br>Max. Capacity Condenser Input Filter<br>DC Output Voltage |                                       |                                      |  |  |
| 12AT7/ECC81       | 12.6<br>6.3                               | 0.15<br>0.30 | Voltage Amplifier                                                                       | 250            | -                       | -2.0    | 10.0                     | -                         | 55                                                                                                                                | -                                     | 5, 500                               |  |  |
| 12AU7/ECC82       | $\begin{array}{c} 12.6\\ 6.3 \end{array}$ | 0.15<br>0.30 | Voltage Amplifier                                                                       | 250            | -                       | -8,5    | 10,5                     | _                         | 17                                                                                                                                | 7.7                                   | 2, 200                               |  |  |
| 12AX7/ECC83       | $\begin{array}{c}12.6\\6.3\end{array}$    | 0.15<br>0.30 | Voltage Amplifier                                                                       | 250            | -                       | -2.0    | 1,2                      | -                         | 100                                                                                                                               | 62.5                                  | 1,600                                |  |  |
| 45B5/UL84         | 45                                        | 0.1          | IDENTICAL ELECTRICAL                                                                    | CHARACTI       | ERISTICS                | AS 6CW5 | 5/EL86                   |                           |                                                                                                                                   |                                       |                                      |  |  |
| 6267/EF86         | 6,3                                       | 0.2          | Voltage Amplifier                                                                       | 250            | 140                     | -2.0    | 3.0                      | 0.6                       | -                                                                                                                                 | 2500                                  | 2,000                                |  |  |

`

| Max. Power Out-<br>put – 2 Tubes,<br>Push-Pull Class B | Load<br>Resistance<br>(K ohms) | Cut-Off<br>Bias<br>(volts) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                            | TYPE NO.   |
|--------------------------------------------------------|--------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| -                                                      | -                              | -                          | Twin triode specifically designed for use in "front-end" stages of FM receivers as a com-<br>bined RF Amplifier and self-oscillating additive mixer. Features extensive internal<br>screening between the two triodes which reduces oscillator radiation. The high mutual                                                                                              | 6AQ8/ECC8  |
| -                                                      | -                              | -                          | conductance, input resistance and amplification factor make possible an average overall "front-end" gain of 350.                                                                                                                                                                                                                                                       |            |
| -                                                      |                                | -                          | Sharp cul-off triode-pentode designed for use as high gain RF or IF amplifier. Valuable<br>in UHF wide band applications.                                                                                                                                                                                                                                              | 6AU6       |
| -                                                      | -                              | -                          | Single-envelope triode-pentode designed for applications in television and AM/FM receivers as a combined oscillator and mixer.                                                                                                                                                                                                                                         | 6BL8/ECF8  |
| -                                                      | -                              | -                          | Single-envelope triode-pentode designed for application in medium power hi-fi amplifiers.<br>Suitable for one-tube phono amplifiers, simple stereo circuits and for vertical deflection<br>in TV applications.                                                                                                                                                         | 6BM8/ECL   |
| 17                                                     | 8<br>Plate-to-Plate            |                            | High quality pentodes designed especially for high fidelity audio systems. High efficiency<br>with low distortion. High sensitivity. Exceedingly small spread in characteristics between<br>individual tubes so that maximum rated output is obtained with all tubes.                                                                                                  | 6BQ5/EL84  |
| = 2 X 350<br>= 150 mA<br>= 50 $\mu$ f<br>= 347 volts   |                                |                            | Indirectly heated, full-wave rectifier with 6.3 volt, 1 amp heater, 150 mA output capacity<br>and 9 pin miniature construction.                                                                                                                                                                                                                                        | 6CA4/EZ81  |
| 100                                                    | 11<br>Plate-to-Plate           | -                          | High quality peniodes designed especially for high fidelity audio systems. High efficiency<br>with low distortion. High sensitivity, Exceedingly small spread in characteristics between<br>individual tubes so that maximum rated output is obtained with all tubes.                                                                                                  | 6CA7/EL34  |
| 25                                                     | -                              |                            | High current, low volta., e output pentode for use in medium power hi-fi amplifiers. Useful<br>in single ended push-pull circuits. In a typical transformerless circuit, a pair of tubes can<br>deliver up to 10 watts in class AB.                                                                                                                                    | 6CW5/EL86  |
|                                                        | -                              | -<br>-<br>-                | Double diode pentode designed especially for use as an RF or IF amplifier. The diodes are<br>for AM detection and AGC. The pentode features high mutual conduction - important in AM,<br>FM and TV applications.                                                                                                                                                       | 6DC8/EBF   |
| -                                                      | -                              |                            | Twin triode designed for use in cascode circuits, RF and IF amplifiers, mixer and phase<br>inverter stages. Frame grid construction provides high transconductance, low noise and<br>extreme reproducibility of characteristics. Operation at low voltage has been successfully<br>shown in D.C. coupled amplifiers and 12 volt B <sub>+</sub> . FM and VHF receivers. | 6DJ8/ECC8  |
| -                                                      | -                              | -                          | Triode-pentode with separate cathodes. Triode designed for use in circuits for keyed AGC, sync-separation, sync-amplification and noise suppression. The pentode is designed for use as a video output tube.                                                                                                                                                           | 6DX8/ECL   |
| -                                                      | -                              |                            | Frame grid remote cut-off pentode designed for use as an IF amplifier in TV receivers.<br>High transconductance, low capacities, and low feed back capacity, enables construction                                                                                                                                                                                      | 6EH7/EF18  |
| -                                                      |                                |                            | of simplified broad band amplifiers with high stability.<br>Frame grid sharp cut-off pentode designed for use as an IF amplifier in TV receivers.<br>High transconductance, low capacities, and low feed back capacity, enables construction<br>of simplified broad band amplifiers with high stability.                                                               | 6EJ7/EF184 |
| -                                                      | -                              | -                          | High gain remote cut-off tetrodes designed for use as an amplifier, oscillator, or mixer in TV tuners. The screen grid is primarily a shield designed to reduce direct grid-to-plate capacitance. Frame grid construction.                                                                                                                                             | 6ER5       |
| -                                                      | -                              | -                          | High performance, frame grid twin triode with remote cut-off characteristics. Designed for use as low noise cascode tube in premium TV tuners.                                                                                                                                                                                                                         | 6ES8/ECC1  |
| -                                                      | -                              |                            | Frame grid twin triode designed for low voltage applications. Suitable for instrumentation<br>and industrial applications as a direct-coupled wide band amplifier and for automobile radio<br>sets and as a RF amplifier and self-oscillating mixer. May be operated directly from a<br>istorage battery.                                                              | 6GM8/ECC   |
| = 2 X 300 y<br>= 90 mA<br>= 50 $\mu$ f<br>= 310 yolts  |                                |                            | Indirectly heated, full-wave rectifier with 90 mA output capacity and 9 pin miniature con-<br>struction.                                                                                                                                                                                                                                                               | 6V4/EZ80   |
| -                                                      | ~                              | -12.0                      | Medium-gain dual triode with low hum, noise and microphonics. Replaces the 12AT7 with-<br>out circuit changes.                                                                                                                                                                                                                                                         | 12AT7/ECC  |
| -                                                      | -                              | -                          | Low noise dual triode with low hum, noise and microphonics. Replaces the 12AU7 without circuit changes.                                                                                                                                                                                                                                                                | 12AU7/ECC  |
| -                                                      | -                              |                            | High-gain dual triode with low hum, noise and microphonics. Replaces the 12AX7 without circuit changes.                                                                                                                                                                                                                                                                | 12AX7/ECC  |
|                                                        | ┟──────                        |                            |                                                                                                                                                                                                                                                                                                                                                                        | 45B5/UL84  |
| -                                                      | -                              | -                          | High gain pentode particularly suitable for pre-amplifier and input stages in which hum,<br>noise and microphony must be kept to a minimum. Electrode structure rigid. Heater is<br>bifilar, twisted pair of wires with magnetic field of one opposed to that of the other.                                                                                            | 6267/EF86  |

11

e.

#### ENTERTAINMENT & AUDIO TUBES

|          | FILA        | WENT         | TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS |       |                |      |                 |                 |                  |                                 |                                      |  |  |  |
|----------|-------------|--------------|--------------------------------------------------|-------|----------------|------|-----------------|-----------------|------------------|---------------------------------|--------------------------------------|--|--|--|
| TYPE NO. |             |              |                                                  | Ар    | plied Voltage: | 5    | Plate           | Screen          | Amplifi-         | Plate<br>Resistance<br>(K ohms) | Transcon-<br>du ctance<br>(micromhos |  |  |  |
|          | Valts       | Amps         | Circuit Application                              | Plate | Screen         | Grid | Corrent<br>(mA) | Current<br>(mA) | cation<br>Factor |                                 |                                      |  |  |  |
| 7025     | 12.6<br>6.3 | 0.15<br>0.30 | Voltage Amplifier                                | 250   | -              | -2.0 | 1.2             | -               | 100              | 62.5                            | 1,600                                |  |  |  |
| 7189     | 6.3         | 0. 76        | Power Output Tube                                | 250   | 250            | -7.3 | 48              | 5.5             | 19.5             | 40                              | 11,300                               |  |  |  |

#### INDICATOR TUBES

|           | FILAM               | ENT   |                            | SCREEN CURR                          |                                         |                                         | GRID BIAS FOR<br>ND OF CONTROL      |
|-----------|---------------------|-------|----------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|
| TYPE NO.  | Volts               | Amps  | SUPPLY AND<br>SCREEN VOLTS | AT START (<br>CONTROL<br>(mA)        |                                         | NCE                                     | RANGE<br>(Yolts)                    |
| IM3/DM70  | 1.4                 | 0.025 | 85                         | 0.17                                 | -                                       |                                         | -10                                 |
| IN3/DM71  | 1.4                 | 0.025 | 85                         | 0.17                                 | -                                       |                                         | -10                                 |
| 6BR5/EM80 | 6.3                 | 0.3   | 250                        | 2.0                                  | 0.5                                     |                                         | -16                                 |
| 6CD7/EM34 | 6.3                 | 0.2   | 250                        | 2.0                                  | 1.0                                     |                                         | ection $1 = -5$<br>ection $2 = -16$ |
| 6DA5/EM81 | 6.3                 | 0.3   | 250                        | 2.0                                  | 0.5                                     |                                         | -16                                 |
| 6FG6/EM84 | 6.3                 | 0.27  | 250                        | 1.1                                  | 0.47                                    | , , , , , , , , , , , , , , , , , , , , | -22                                 |
| 6370/E1T  | 6.3                 | 0.3   | -                          | 1                                    | Special "Beam Def<br>Max. counting rate |                                         |                                     |
|           | 1                   |       | ANODE                      | MAX. LIGHT                           | ZERO L                                  | IGHT OUTPUT V <sub>f</sub> =            | 7.0 V.A.C.                          |
|           |                     |       | VOLTAGE                    | OUTPUT                               | One side grounded                       | Center tap grounded                     | Neg. terminal grounded              |
| 6977      | 1.0 A.C.<br>or D.C. | 0.03  | +50 V.D.C.                 | $V_g = 0$<br>I <sub>a</sub> = 0.6 mA | V <sub>g</sub> = 3.5 V.                 | $v_g = 3.0 V.$                          | V <sub>g</sub> = 2.5 V.             |

#### PREMIUM QUALITY TUBES

|           |           | HEA   | TER   |                              | TRANSCON                             | TYPICAL OPERATIO |                           |                                  |                         |                    |                         |  |  |  |
|-----------|-----------|-------|-------|------------------------------|--------------------------------------|------------------|---------------------------|----------------------------------|-------------------------|--------------------|-------------------------|--|--|--|
| TYPE NO.  | PROTOTYPE | VOLTS | АМР5  | AMPLIFI-<br>CATION<br>FACTOR | TRANSCON-<br>DUCTANCE<br>(MICROMHOS) | VOLTS<br>DC      | PLATE<br>CURRENT<br>mA-DC | RESISTANCE<br>K OHMS             | GRID<br>VOLTS<br>DC     | SCR<br>VOLTS<br>DC | EEN<br>CURRENT<br>ma-DC |  |  |  |
| E99F      |           | 6.3   | 0.15  | 27                           | 3600                                 | 250              | 9,2                       | 1000                             | -20                     | 100                | 3.3                     |  |  |  |
| 5726      | 6AL5      | 6.3   | 0.3   |                              | ł                                    | Max. p           | late 117 V.<br>Peak plate | rms at 9 mA-1<br>e current 54 m. | DC total outpu<br>A max | 1<br>1t;           | 1                       |  |  |  |
| 5654      | 6AK5      | 6.3   | 0.175 | -                            | 5000                                 | 120              | 7.5                       | 340                              | R <sub>k</sub> =200     | 120                | 2.5                     |  |  |  |
| 6201      | 12AT7     | 6.3   | 0.30  | 60                           | 5500                                 | 250              | 10                        | 10.9                             | R <sub>k</sub> =200     | -                  |                         |  |  |  |
|           |           | 12.6  | 0.15  |                              |                                      |                  |                           |                                  |                         |                    | ž                       |  |  |  |
| 6218/E80T |           | 6.3   | 0.15  | -                            | -                                    | 100              | 1,35                      | -                                | 0                       | 70                 | -                       |  |  |  |
| 7316      |           | 6.3   | 0,3   | 19,5                         | 3100                                 | 100              | 11.8                      | 6250                             | -8.5                    | -                  | -                       |  |  |  |
|           |           | ļ     |       |                              |                                      |                  | 2                         |                                  |                         |                    |                         |  |  |  |

| Max. Power Out-<br>put - 2 Tubes,<br>Push-Pull Class B | Load<br>Resistance<br>(K ohms) | Cut-Off<br>Bias<br>(volts) | DESCRIPTION                                                                                                                                                                                             | TYPE NO. |
|--------------------------------------------------------|--------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| _                                                      | -                              | -                          | High gain dual triode with low hum, noise and microphonics, the 7025 is a direct, high quality replacement for the 12AX7/ECC83.                                                                         | 7025     |
| 24                                                     | -                              | -                          | Miniature pentode designed for use as a power amplifier in high fidelity audio equipment.<br>It is a specially tested and improved tube intended for use in amplifiers of over 20 watt<br>capabilities. | 7189     |

| DESCRIPTION                                                                                                                                                                                                                        | TYPE NO.  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Tuning indicator especially designed for battery operated sets featuring low filament consumption (25mA), subminiature size and "on-off" indication. Ideal for transistorized computers.                                           | IM3/DM70  |
| Tuning indicator especially designed for battery operated sets featuring low filament consumption (25mA), subminiature size and "on-off" indication. Ideal for transistorized computers.                                           | IN3/DM71  |
| 9 pin miniature tuning indicator featuring small size, ease of installation and high sensitivity for weak signals.                                                                                                                 | 6BR5/EM80 |
| Tuning indicator featuring double sensitivity, clear indication even with weak signals.                                                                                                                                            | 6CD7/EM34 |
| Same as EM80 except for different fluorescent pattern. Suitable for radios, tape recorders and measuring equipment. Pattern makes it useful also as a level indicator.                                                             | 6DA5/EM81 |
| 9 pin miniature tuning indicator for use in broadcast receivers and tape recorders. The deflection electrode is connected separately to a pin at the base. Converging dual fluorescent bar pattern.                                | 6FG6/EM84 |
| Decade counter with luminescent spot at numbers on face 0 to 9.<br>computers, industrial counters, control and memory applications.                                                                                                | 6370/E1T  |
| Subminiature vacuum triode with fluorescent anode. Designed for electronic computer and business machine applications to replace neon lamps. Particularly suited to use in transistorized circuits. Designed for 20,000 hour life. | 6977      |

|                          |                             |                          | CAPAC  | CITANCES-µµf |             |                                                                                                                                                                                                                                                                                                         |           |
|--------------------------|-----------------------------|--------------------------|--------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| PO¥ER<br>OUTPUT<br>¥atts | LOAD<br>RESISTANCE<br>Kohms | CUT-OFF<br>BIAS<br>Volts | G-P    | інрит        | OUTPUT      | DESCRIPTION                                                                                                                                                                                                                                                                                             | TYPE NO.  |
| _                        | -                           | -                        | . 0035 | 4.5          | 5.2         | Ruggedized, remote cut-off, miniature pentode designed for mobile and industrial applications.                                                                                                                                                                                                          | E99F      |
|                          |                             |                          | -      | -            | -           | High perveance twin diode. Rugged and reliable. For use<br>in critical applications in which operational dependability<br>is of primary importance.                                                                                                                                                     | 5726      |
| _                        | -                           | -12                      | 0.02   | 4.0          | 2, 9        | Sharp cut-off pentode particularly suited for use as a wide<br>band, high frequency amplifier. Ruggedized construction<br>makes it suitable for critical applications in which opera-<br>tional dependability is of primary importance.                                                                 | 5654      |
| -                        | -                           | - 20                     | 1.6    | 2.5          | 0.45        | Premium quality twin triode designed for use as RF ampli-<br>fier in grounded grid circuits; as a frequency changer be-<br>low 300 Mc/S; in mobile and industrial equipment with<br>intermittent operation; and in on-off control applications<br>where operation under cut-off conditions is required. | 6201      |
| -                        | -                           |                          | -      | 2. 2         | 2.0<br>m ax | Ruggedized beam deflecting tube designed for use as a phase discriminator in impulse-governed oscillators.                                                                                                                                                                                              | 6218/E80T |
| -                        | -                           | -                        | 1.6    | 1.8          | 0,5         | Medium $\mu$ long life, reliable twin triode with separate<br>cathodes designed for application in computer circuits not<br>critical as to hum, microphony and noise.                                                                                                                                   | 7316      |

\$

10,200

#### PREMIUM QUALITY TUBES

|                                                                |                        |         |                |              |        | MAXIMUM RATINGS                                 |               |                         |                     |                 |                     | TYPICAL CHARACTERISTICS |                                        |               |                     |  |
|----------------------------------------------------------------|------------------------|---------|----------------|--------------|--------|-------------------------------------------------|---------------|-------------------------|---------------------|-----------------|---------------------|-------------------------|----------------------------------------|---------------|---------------------|--|
|                                                                | He                     | ater    |                | Capacitance  | s      |                                                 |               |                         |                     |                 |                     |                         |                                        |               |                     |  |
| TYPE                                                           | Voltage                | Current | Cold Values    | lnput        | Output | Max.<br>Anode<br>Dissi.<br>pation               | Anode Voltage | Suppressor Grid Voltage | Screen Grid Voltage | Cathode Current | Screen Grid Voltage | Anade Voltage           | Cathode Resistor                       | Arade Current | Screon Grid Current |  |
|                                                                | voİts                  | amp.    |                | <b>ग</b> ्रम | j an   | watts                                           | valts         | volts                   | volts               | mÅ              | valts               | valts                   | ohms                                   | щÅ            | щÅ                  |  |
| E92CC 1<br>Twin<br>Triode                                      | 6.3                    | 0.4     | one<br>section | 3.1          | 0.3    | 2.0 <sup>2</sup><br>(absolute<br>value)         | 300           | -                       | -                   | 15              | -                   | 150                     | -                                      | 8.5           | -                   |  |
| 5842 1<br>Triode                                               | 6.3                    | 0.3     | -              | 9.0          | 1.8    | 4.5                                             | 400           | -                       | -                   | 38              | -                   | 130                     | 360                                    | 27            | -                   |  |
| 5920/E90CC <sup>1</sup><br>Twin<br>Triode                      | 6.3                    | 0.4     | one<br>section | 3.4          | 0.35   | 2.0 <sup>2</sup><br>(absolute<br>value)         | 300           | _                       | -                   | 15              | _                   | 100                     | -                                      | 8.5           | -                   |  |
| 6084/E80F <sup>1,3</sup><br>Sharp cut-off<br>amplifier pentode | 6.3                    | 0.3     | -              | 5.0          | 7.3    | 1.3<br>(absolute<br>value)                      | 300           | 0                       | 200                 | 9               | 100                 | 250                     | 550                                    | 3             | 0.65                |  |
| 6085/E80CC <sup>1,3</sup><br>Twin<br>Triode                    | Series<br>12.6<br>Par. | 0.3     | one<br>section | 2,6          | 3.5    | 2.0 <sup>2</sup><br>(absolute<br>value)         | 300           | -                       | -                   | 12              | -                   | 250                     | 920                                    | 6             | -                   |  |
| 6211 <sup>1</sup><br>Twin<br>Triode                            | 6.3<br>6.3<br>12.6     | 0.3     | one<br>section | 2.9          | 0.35   | 1,5 <sup>2</sup><br>(absolute<br>value)         | 200           | -                       | -                   | 14              |                     | 100                     | 470                                    | 4.6           |                     |  |
| 6227/E80L <sup>1,3</sup><br>Power<br>Pentode                   | 6.3                    | 0.75    | -              | 11.0         | 7,0    | 8.0<br>(absolute<br>value)                      | 300           | o                       | 300                 | 50              | 250                 | 250                     | 270                                    | 24            | 3.3                 |  |
| 64631<br>medium – twin<br>triode                               | 6.3<br>12.6            | 0.6     | one<br>section | 3,4          | 0,5    | 4.4                                             | 330           | -                       | -                   | 31              | _                   | 250                     | 620                                    | 14.5          | -                   |  |
| 6686/E81L <sup>1</sup><br>Power<br>Pentode                     | 6.3                    | 0.375   | -              | 11.5         | 6.5    | 4.5<br>(design<br>center<br>value)              | 210           | 0                       | 210                 | 30              | 210                 | 210                     | 120                                    | 20            | 5.3                 |  |
| 6687/E91H <sup>1</sup><br>dual control<br>heptode              | 6, 3                   | 0.27    | -              | 5.4          | 7.6    | 1.0                                             | 250           | -100<br>+0              | 100                 | 20              |                     | co                      | al control<br>ntrol at -<br>ntrol grid | 10 volts a    | und plate           |  |
| 6688/E180F <sup>1,3</sup><br>Broad-band<br>amplifier pentode   | 6.3                    | 0.3     | -              | 7.5          | 3.0    | 3,0<br>(absolute<br>value)                      | 210           | 0                       | 175                 | 25              | 160                 | 190                     | 630                                    | 13            | 3.3                 |  |
| 6689/E83F 1<br>wide-band<br>amplifier pentode                  | 6.3                    | 0.3     | -              | 8,0          | 3.6    | 2, 1<br>(design<br>center<br>value)             | 210           | 0                       | 210                 | 16              | 120                 | 210                     | 165                                    | 10            | 2.1                 |  |
| 6922/E88CC 1.3<br>Twin<br>Triode                               | 6, 3                   | 0.3     | one<br>section | 3.1          | 0.5    | 1.5 <sup>2</sup><br>(design<br>center<br>value) | 220           | -                       | -                   | 20              | -                   | 100                     | 680                                    | 15            | -                   |  |
| 70621<br>Twin<br>Triode                                        | 6.3<br>12.6            | 0,400   | one<br>section | 3.5          | 0.5    | 2.0 <sup>2</sup><br>(absolute<br>value)         | 600           | -                       | -                   | 20              | -                   | 150                     | -                                      | 8.5           | -                   |  |

,

1 These tubes are designed for a life of 10,000 hours or more 2 Ratings and operating conditions apply to one section 3 Rugged construction

|                  |                      |                  |               |                  |                                           |                  |                           | AL OPER                                       | ATION              |                    |                                |            |              |                    |                |                  |                                                                |
|------------------|----------------------|------------------|---------------|------------------|-------------------------------------------|------------------|---------------------------|-----------------------------------------------|--------------------|--------------------|--------------------------------|------------|--------------|--------------------|----------------|------------------|----------------------------------------------------------------|
| Transconductance | Amplification Factor | Plate Resistance | Anode Current | Anode Rosistance | Screen Grid Resistor                      | Cathode Resistor | Cathode By-Pass Capacitor | Input Resistance Following<br>Amplifier Stage | Grid Leak Resistor | Output Voltage     | Amplification                  | Distortion | Output Power | Input Voltage      | Maximum Length | Maximum Diamoter | TYPE                                                           |
| mi cromho s      |                      | megolims         | щÅ            | kilahms          | kilohms                                   | kilohms          | <b>j</b> rr               | kilohms                                       | megohms            | volts<br>effective | ۷ <sub>°</sub> /۷ <sub>i</sub> | 8          | watts        | volts<br>effective | inches         | inches           |                                                                |
| 6,000            | 45                   | 0.0083           | -             | -                | -                                         | -                | -                         | -                                             | -                  | -                  | -                              | -          | -            | -                  | 2-5/8          | 3/4              | E92CC 1<br>Twin<br>Triode                                      |
| 2, 700           | 43                   | 0.0016           | -             |                  | -                                         | •                | -                         | -                                             | -                  | -                  | -                              | -          | -            | -                  | 1-3/4          | 7/8              | 5842 <sup>1</sup><br>Triode                                    |
| 6,000            | 27                   | 0.0045           | -             | -                | -                                         | -                | _                         | -                                             | -                  | -                  | -                              | _          | -            | -                  | 2-5/8          | 3/4              | 5920/E90CC1<br>Twin<br>Triode                                  |
| 1,850            | 25                   | 1.5              | 0.8           | 220              | 1200                                      | 1.5              | 50                        | 680                                           | 1.0                | 25                 | 175                            | 1.4        | -            | -                  | 2-5/8          | 7/8              | 6084/E80F <sup>1,3</sup><br>Sharp cut-off<br>amplifier pentode |
| 2, 700           | 27                   | 0.01             | 0.67          | 220              | -                                         | 3.9              | 50                        | 680                                           | -                  | 29                 | 21                             | 2.6        | -            | -                  | 3-1/16         | 7/8              | 6085/E80CC <sup>1,3</sup><br>Twin<br>Triode                    |
| 3, 600           | 27                   | 0.0075           | _             | -                | _                                         | -                | _                         | -                                             | •                  | -                  | -                              | -          | -            | -                  | 2-5/8          | 7/8              | 6211 <sup>1</sup><br>Twin<br>Triode                            |
| 9,000            | 21.5                 | 0.09             | 30            | 10               | 1.0                                       | 0.13             | 50                        | -                                             | 1.0                | _                  | -                              | 10         | 2.7          | 2.9                | 3-1/16         | 7/8              | 6227/E80L <sup>1,3</sup><br>Power<br>Pentode                   |
| 5, 200           | 20                   | -                | -             | -                | -                                         | -                | -                         | -                                             | -                  | _                  | -                              | -          | -            | -                  | 2-5/8          | 7/8              | 6463 1<br>medium µtwin<br>triode                               |
| 11,000           | 36                   | 0.3              | 20            | 15               | -                                         | 0.12             | 50                        | -                                             | 0.1                | -                  | -                              | 5          | 1.0          | -                  | 2-5/8          | 7/8              | 6686/E81L <sup>1</sup><br>Power<br>Pentode                     |
| voltage a        | at 150 ve            | olts, the pla    | ate curren    | t will b         | " control ci<br>e less than<br>replacemen | 0.2 mA.          | With                      |                                               | I                  | 1                  |                                | L          | I            |                    | 2-1/8          | 3/4              | 6687/E91H <sup>1</sup><br>dual control<br>heptode              |
| 16, 500          | 50                   | 0.09             | -             | 1.0              | _                                         | -                | -                         | -                                             | 0.5                | -                  | -                              | 0.9        | -            | 0.1                | 1-3/4          | 7/8              | 6688/E180F 1.3<br>Broad-band<br>amplifier pentode              |
| 9,000            | 34                   | 0.5              | 8.3           | 20               | 5.6                                       | 0.18             | 50                        | -                                             | 0.1                | -                  | -                              | 10         | 0.66         | 1.1                | 2-5/8          | 7/8              | 6689/E83F 1<br>wide-band<br>amplifier pentode                  |
| 12, 500          | 33                   | 0.00264          | -             | -                | -                                         | -                | -                         | -                                             | -                  | -                  |                                | -          | -            | -                  | 2-3/16         | 7/8              | 6922/E88CC 1,3<br>Twin<br>Triode                               |
| 6, 400           | 46                   | 0.0072           | -             | _                | -                                         | -                | -                         | -                                             | -                  | -                  | -                              | -          | -            | _                  | 2-5/8          | 7/8              | 7062 1<br>Twin<br>Tríode                                       |

----

#### PREMIUM QUALITY TUBES

|                               |                |         |                |            |                  |                                   | MA XIM        | UM RATI                 | NGS                 |                 | ĺ                   | T               | YPICAL CI        | HARACTER      | ISTICS              |
|-------------------------------|----------------|---------|----------------|------------|------------------|-----------------------------------|---------------|-------------------------|---------------------|-----------------|---------------------|-----------------|------------------|---------------|---------------------|
|                               | H-             | eater   |                | Capacitane | es               | -                                 |               | 91                      |                     |                 |                     |                 |                  |               |                     |
| TYPE                          | Voltage        | Current | Cold Values    | finper     | Output           | Max.<br>Anode<br>Dissi-<br>pation | Anode Voltage | Suppressor Grid Voltage | Screen Grid Voltage | Cothode Current | Screen Grid Voltage | Anode Valtage   | Cathode Resistar | Anode Currcat | Screen Grid Current |
|                               | volts          | amp.    |                | Jun        | 1<br>1<br>1<br>1 | watts                             | valts         | valts                   | volts               | ۳A              | valts               | valts           | ohms             | ЧŲ            | щÅ                  |
| 7119/E182CC 1<br>Twin         | Series<br>12.6 | 0.4     | e<br>ion       | 5,3        | 6.7              | 4.5<br>(absolute                  | 300           |                         |                     | 60              |                     | 1.00            |                  |               |                     |
| Triode                        | Par.<br>6.3    | 0.8     | one<br>section | 5,5        | 0.1              | value)                            | 300           | -                       | -                   |                 | -                   | 120             | -                | 36            | -                   |
| 7308/E188CC<br>Twin<br>Triode | 6.3            | 0.335   | one<br>section | 3.1        | 1,75             | 2.0                               | 250           | -                       | -                   | 22              | -                   | 100<br>(supply) | 680              | 15            | -                   |
| 7534 <sup>1</sup><br>Pentode  | 6.3            | 1.7     |                | 35         | 17               | 27.5                              | 900           | _                       | 250                 | 300             | 150                 | 250             | -                | 100           | 4                   |

These tubes are designed for a life of 10,000 hours or more

#### SUBMINIATURE TUBES (SCREEN GRID TYPES)

|           | Filo         | ment          | Copacitances µµf |       | Plate  |       | Grid                | Grid           | Plate          |                |                       |
|-----------|--------------|---------------|------------------|-------|--------|-------|---------------------|----------------|----------------|----------------|-----------------------|
| TYPE NO.  | D-C<br>Volts | Current<br>mA | <u>G-P</u>       | Input | Output | Valts | Diss.<br>Milliwatts | No. J<br>Volts | No. 2<br>Volts | Micro+<br>Amps | Resistance<br>Megohms |
| 6007/5913 | 1.25         | 13.3          | 0,2              | 2, 5  | 2, 2   | 45    | 25                  | -0.2           | 45             | 475            | 0.4                   |
| 6008/5911 | 0.625        | 13.3          | 0.2              |       | 1,5    | 45    | 1.5                 | -0.2           | 45             | 50             | 0.4                   |

#### UHF SPECIAL PURPOSE TUBES

| TYPE NO.     | Fil   | ament | Plate<br>Dissipation | Mo | Transcon-<br>ductance | Pia                                                                                                             | te     | Power Dutput                                     |
|--------------|-------|-------|----------------------|----|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------|
|              | Volts | Amps  | Watts                |    | (micromhos)           | Yolts                                                                                                           | Amps   | Characteristics                                  |
| DX145A/EC157 | 6.3   | 0.73  | -                    | -  | -                     | 200                                                                                                             | 0.060  | 1.8                                              |
| 6923/EA52    | 6, 3  | 0,3   | -                    | -  | -                     | $   \begin{array}{r}     1000 V at \\     <100 mc \\     1000 x \frac{fo}{f} \\     at > 100 mc   \end{array} $ | 0.0003 | -                                                |
| EFP60        | 6.3   | 0.37  | 2                    | -  | 25, 000               | 300                                                                                                             | 0.020  | -                                                |
| 6Q4/EC80     | 6.3   | 0,45  | 4                    | 30 | 12,000                | 550                                                                                                             | 0.015  | 15 db gain<br>at 300 mc<br>(Bandwidth<br>4.5 mc) |
| 6R4/EC81     | 6.3   | 0.24  | 5                    | 16 | 5,500                 | 300                                                                                                             | 0.0277 | Power out-<br>put 1.1 w<br>at 750 mc             |
| 5847         | 6,3   | 0.3   | 3.0                  | -  | 12, 500               | 180                                                                                                             | 0.35   | -                                                |

1 fo = 100 mc.

|                  |                      |                  |               |                  |                      |                  | TYPI                      | AL OPE                                        | RATION             |                    |                   | <u>.</u>   |              |                    |                |                  |                               |
|------------------|----------------------|------------------|---------------|------------------|----------------------|------------------|---------------------------|-----------------------------------------------|--------------------|--------------------|-------------------|------------|--------------|--------------------|----------------|------------------|-------------------------------|
| Transconductonce | Amplification Factor | Plate Resistance | Anade Current | Anode Resistance | Screen Grid Resistor | Cathode Resistor | Cathode By-Pass Capacitor | Input Resistance Following<br>Amplifier Stage | Grid Leak Resistor | Output Voltage     | A mplification    | Distortion | Output Power | laput Voltage      | Maximum Length | Maximum Diameter | TYPE                          |
| micromhos        |                      | megahm s         | шÅ            | kilohms          | k i lohm s           | kilohms          | <b>F</b>                  | kilohms                                       | swyobaw            | volts<br>offective | ۲ <sub>0</sub> /۷ | 8          | watts        | valts<br>effectiva | inches         | inches           |                               |
| 15, 500          | 24.5                 | 0.0016           | -             | _                | -                    | -                | -                         | -                                             | -                  | -                  | -                 | -          | _            |                    | 2-5/8          | 7/8              | 7119/E182CC<br>Twin<br>Triode |
| 12, 500          | 33                   | -                | -             | _                | -                    | -                | _                         | -                                             | -                  | _                  | -                 | -          |              | -                  | 2-3/16         | 7/8              | 7308/E188CC<br>Twin<br>Triode |
| 25, 000          | 6.5                  | -                | -             | -                | -                    | -                | -                         | -                                             | -                  | -                  | -                 | -          | -            | -                  | 5              | 1-9/16           | 7534<br>Pentode               |

| Trans;<br>conductance<br>Micromhos | Output<br>Hilliwatts | DESCRIPTION                                                                                                                                                                     | TYPE NO.  |
|------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 420                                | 6                    | Radiation-cooled pentode output amplifier for hearing aids and other purposes, where small size, light weight and low battery drain are important. An ideal tube for receivers. | 6007/5913 |
| 100                                | 2, 25                | Same as above except this tube is a voltage amplifier.                                                                                                                          | 6008/5911 |

| Max. Freq. | Capocitances |             |        | DESCRIPTION                                                                                                                                                                                                               | TYPE NO.    |  |  |
|------------|--------------|-------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| mc/sec.    | G-P          | Input       | Output |                                                                                                                                                                                                                           |             |  |  |
| 4000       | type, h      |             |        | CW amplifier triodo - disc seal triode, indirectly heated. Features "L"<br>type, high emission, long life cathode. For frequencies up to 4000 Mc.                                                                         | DX145A/EC15 |  |  |
| 1000       | -            | <b>≟0.5</b> | -      | Disc-seal, vacuum diode for UHF voltmeters and monitoring devices.<br>Anode piu connection adaptable for use as probe contact.                                                                                            | 6923/EA52   |  |  |
| ~          | 0.004        | 9.2         | 6      | Secondary emission pentode for wide band amplifier application where<br>stability and high ratio of transconductance to capacities is important.<br>Used in high speed computer service and high quality TV applications. | EFP60       |  |  |
| 500        | 0.06         | 5,4         | 3.4    | Radiation-cooled triode, button type base, indirectly heated cathode.<br>For use as amplifier and mixer up to 500 mc. Ideally suited for UHF<br>television, baloon sondes, measuring equipment, etc.                      | 6Q4/EC80    |  |  |
| 1200       | 1.5          | 1.7         | 0.5    | Radiation-cooled triode, standard button base, indirectly heated cathode.<br>Used as oscillator up to 1200 mc. High efficiency at high frequencies.                                                                       | 6R4/EC81    |  |  |
|            | 0.05         | 7.0         | 2.5    | High-gain miniature pentode with high figure of merit. For broad-band applications. Plug-in replacement for Western Electric 404A.                                                                                        | 5847        |  |  |

#### PERMANENT SENSITIVITY RADIATION COUNTER TUBES

| TYPE NO.             | Filling                                       | Operating             | Plateau                   | Slope                          | Dead<br>Time          | Background<br>(Shielded      |
|----------------------|-----------------------------------------------|-----------------------|---------------------------|--------------------------------|-----------------------|------------------------------|
|                      |                                               | Voltage               |                           | Plateau                        | (Approx.)             | 2" Lead)                     |
| 75N-7 <sup>2</sup>   | Neon + quenching<br>admixture                 | 700 D.C. <sup>2</sup> | in excess of<br>125 volts | 15% per<br>100 volts max.      | 100 micro-<br>seconds | 50 counts per<br>minute max. |
| 75NB3-7 <sup>2</sup> | Neon + quenching<br>admixture                 | 700 D.C. <sup>2</sup> | in excess of<br>125 volts | 15% per<br>100 volts max.      | 100 micro-<br>seconds | 50 counts per<br>minute max. |
| 90CB                 | Neon + quenching<br>admixture                 | 1400 D.C.             | in excess of<br>200 volts | 10% per<br>100 volts max.      | 100 micro-<br>seconds | 50 counts per<br>minute max. |
| 90NB                 | Neon + quenching<br>admixture                 | 900 D.C.              | in excess of<br>200 volts | 10% per<br>100 volts max.      | 100 micro-<br>seconds | 50 counts per<br>minute max. |
| 100C                 | Argon + quenching<br>admixture                | 1200 D.C.             | in excess of<br>300 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 100CB                | Argon + quenching<br>admixture                | 1200 D.C.             | in excess of<br>300 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 100HB                | Helium + organic<br>quenching agent           | 1300 D.C.             | in excess of<br>250 volts | 1.5% per<br>100 volts          | 150 micro-<br>seconds | 50 counts per<br>minute max. |
| 100N                 | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>200 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 100NB                | Neon + quenchiug<br>admixture                 | 700 D.C.              | in excess of<br>200 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 120C                 | Argon + quenching<br>admixture                | 1200 D.C.             | in excess of<br>300 volts | 5% to 10%<br>per 100 volts     | 300 micro-<br>seconds | 100 counts pe<br>minute max. |
| 120N                 | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>200 volts | 5% to 10%<br>per 100 volts     | 300 micro-<br>seconds | 100 counts pe<br>minute max. |
| 120NB                | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>200 volts | 5% to 10%<br>per 100 volts     | 300 micro-<br>seconds | 100 counts pe<br>minute max. |
| 150N                 | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>180 volts | 10% per<br>100 volts max.      | 150 micro-<br>seconds | 75 counts per<br>minute max. |
| 150NB                | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>180 volts | 10% per<br>100 volts max.      | 150 micro-<br>seconds | 75 counts per<br>minute max. |
| 153C                 | Argon + quenching<br>admixture                | 1500 D.C.             | in excess of<br>400 volts | 3% to 8%<br>per 100 volts      | 150 micro-<br>seconds | 60 counts per<br>minute max. |
| 160G                 | Neon + halogen<br>quenching admixture         | -                     | 680-780 volts             | 15% per<br>100 volts           | -                     | 40 counts per<br>minute max. |
| 170G                 | Neon + halogen<br>quenching admixture         | -                     | 680-780 volts             | 15% per<br>100 volts           | -                     | 80 counts per<br>minute max. |
| 200C                 | Argon + quenching<br>admixture                | 1200 D.C.             | in excess of<br>300 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 200CB                | Argon + quenching<br>admixture                | 1200 D.C.             | in excess of<br>300 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 200 HB               | Helium + organic<br>quenching agent           | 1300 D.C.             | in excess of<br>250 volts | 1,5% per<br>100 volts          | 150 micro-<br>seconds | 50 counts per<br>minute max. |
| 200N                 | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>200 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts per<br>minute max. |
| 200NB                | Neon + quenching<br>admixture                 | 700 D.C.              | in excess of<br>200 volts | 5% to 10%<br>per 100 volts     | 200 micro-<br>seconds | 50 counts pe<br>minute max.  |
| 230N                 | Neon + quenching<br>admixture                 | 850 D.C.              | in excess of<br>150 volts | Less than 15%<br>per 100 volts | 100 micro-<br>seconds | 15 counts per<br>minute max. |
| 240C                 | Neon + quenching<br>admixture                 | 1200 D.C.             | in excess of<br>200 volts | Less than 10%<br>per 100 volts | 100 micro-<br>seconds | 50 counts pe<br>minute max.  |
| 240N                 | Neon + quenching<br>admixture                 | 850-900 D.C.          | in excess of<br>150 volts | Less than 15%<br>per 100 volts | 100 micro-<br>seconds | 50 counts pe<br>minute max.  |
| 912NB <sup>3</sup>   | Neon + quenching<br>admixture                 | 900 D.C.              | in excess of<br>200 volts | 10% per<br>100 volts max.      | 100 micro-<br>seconds | 75 counts pe<br>minute max.  |
| 18515                | Neon, argon, + halogen<br>quenching admixture | 550 D.C.              | 450-650 volts             | 3% per<br>100 volts            | 150 micro-<br>seconds | 5 counts per<br>minute max.  |
| 18516                | Neon, argon, + halogen<br>quenching admixture | 550 D.C.              | 450-650 volts             | 3% per<br>100 volts            | 200 micro-<br>seconds | 8 counts per<br>minute max.  |
| 18517                | Neon, argon, + halogen<br>quenching admixture | 1000 D.C.             | 800-1200 volts            | 4% per<br>100 volts            | 1 milli-<br>second    | 80 counts pe<br>minute max.  |
| 18518                | Neon, argon, + halogen<br>quenching admixture | 1000 D.C.             | 800-1200 volts            | 4% per<br>100 volts            | 1 milli-<br>second    | 80 counts pe<br>minute max.  |

NOTE: All cathodes are stainless steel. Operating temperature range,  $-55^{\circ}C$  to  $+75^{\circ}C$ . 1 Detailed data available upon request.

2 Also available in 600 volt operating voltage. Specify Type 75N-6 or 75NB3-6. For 900 volt operation, specify Type 75N-9 or 75NB3-9.

| Average Mica Window                                      | Effective<br>Dia. of | Effective<br>Cathode Dimensions         | Max. Overall<br>Tubë Dimensions     | Life<br>Expectancy                | Application                   |  |
|----------------------------------------------------------|----------------------|-----------------------------------------|-------------------------------------|-----------------------------------|-------------------------------|--|
| or Wall Thickness                                        | Mica Window          | (Inches)                                | (Inches)                            | (Counts)                          | Application                   |  |
| 150 mg/cm <sup>2</sup>                                   | -                    | 2-11/16 long x 5/8 O.D.<br>x.009" Wall  | 5/8 x 4-3/8                         |                                   | Gamma                         |  |
| 150 mg/em <sup>2</sup>                                   | -                    | 2-11/16 long x 5/8 O.D.<br>x.009"/Wall  | 5/8 x 4-5/16<br>(3 Pin Base)        |                                   | Gamma                         |  |
| 30-40 mg/cm <sup>2</sup>                                 | -                    | 3 long x 5/8 O.D.                       | 5/8 O.D. x 5-5/8<br>(3 Pin Base)    | by use                            | Beta & Gamma                  |  |
| 30-40 mg/cm <sup>2</sup>                                 | -                    | 3 long x 5/8 O.D.                       | 5/8 O.D. x 5-5/8<br>(3 Pin Base)    | Unlimited by use                  | Beta & Gamma                  |  |
| .0005 in. =<br>3.5 mg/cm <sup>2</sup> = 12.70 microns    | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-1/2 x 3-3/4                       | Ca.                               | Beta & X-Ray                  |  |
| .0005 in. =<br>3.5 mg/cm <sup>2</sup> = 12.70 microns    | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-3/8 x 4-11/32<br>(4 Pin Base)     |                                   | Beta & X-Ray                  |  |
| .0005 in = $3.5 \text{ mg/cm}^2 = 12.70 \text{ microns}$ | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-3/8 x 4-11/32<br>(4 Pin Base)     | 1.5 x 10 <sup>8</sup><br>approx.  | Beta                          |  |
| .0005 in. =<br>3.5 mg/cm <sup>2</sup> = 12.70 microns    | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-1/2 x 3-3/4                       |                                   | Beta                          |  |
| .0005 in. =<br>3.5 mg/cm <sup>2</sup> = 12.70 microns    | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-3/8 x 4-11/32<br>(4 Pin Base)     |                                   | Beta                          |  |
| .0008 in. =<br>5.6 mg/cm <sup>2</sup> = 20.32 microns    | 1-29/32"             | 2-11/16 lg. x 2 O.D.<br>x 5/64 Wall     | 2-3/8 x 5-1/8                       |                                   | Beta & X-Ray                  |  |
| .0008 in. =<br>5.6 mg/cm <sup>2</sup> = 20.32 microns    | 1-29/32"             | 2-11/16 lg, x 2 O.D.<br>x 5/64 Wall     | 2-3/8 x 5-1/8                       | a su                              | Beta                          |  |
| .0008 in. =<br>5.6 mg/cm <sup>2</sup> = 20.32 microns    | 1-29/32"             | 2-11/16 lg. x 2 O.D.<br>x 5/64 Wall     | 2-5/16 x 5-3/4<br>(4 Pin Base)      | Unlimited by use                  | Beta                          |  |
| .0005 in. =<br>3.5 mg/cm <sup>2</sup> = 12.70 microns    | 25/32"               | 4 lg. x 7/8 O.D.<br>x 3/64 Wall         | 1 x 6-5/8<br>(4 Pin Base)           | Unlim                             | Beta & Gamma                  |  |
| .0005 in. =<br>3,5 mg/cm <sup>2</sup> = 12.70 microns    | 25/32"               | 4 lg. x 7/8 O.D.<br>x 3/64 Wall         | 1-5/32 x 7-1/8                      |                                   | Beta & Gamma                  |  |
| .0005 in. =<br>3.5 mg/cm <sup>2</sup> = 12.70 microns    | 25/32"               | 4-3/8 lg. x 7/8 O.D.                    | 1 O. D. x 6 lg.                     |                                   | X-Ray                         |  |
| ~                                                        | -                    | 6-5/16 lg. x 13/32 O.D<br>x 3/16 Wall   | 13/32 x 8-1/8                       |                                   | Gamma                         |  |
| -                                                        | -                    | 17 lg. x 13/32 O.D.<br>x 3/16 Wall      | 13/32 x 19                          |                                   | Gamma                         |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 1-3/32"              | 1-1/2 lg. x 1-3/16 O. D.<br>x 3/32 Wall | 1-1/2 x 3-3/4                       | Unlimited by use                  | Alpha, Beta,<br>Gamma & X-Ray |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-3/8 x 4-11/32<br>(4 Pin Base)     | Unlimi                            | Alpha, Beta,<br>Gamma & X-Ray |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-3/8 x 4-11/32<br>(4 Pin Base)     | 1, 5 x 10 <sup>8</sup><br>approx. | Alpha & Beta                  |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-1/2 x 3-3/4                       |                                   | Alpha & Beta                  |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 1-3/32"              | 1-1/2 lg. x 1-3/16 O.D.<br>x 3/32 Wall  | 1-3/8 x 4-11/32<br>(4 Pin Base)     |                                   | Alpha & Beta                  |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 13/32"               | 1-1/4 lg. x 5/8 O.D.<br>x .010" Wall    | 5/8 x 3-1/4<br>(3 Pin Base)         |                                   | Alpha & Beta                  |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 13/32''              | 4 lg. x 5/8 O.D.<br>x .010" Wall        | 5/8 x 5-7/8<br>(3 Pin Base)         | jy use                            | Alpha, Beta &<br>Gamma        |  |
| .0002 in. =<br>1.4 mg/cm <sup>2</sup> = 5.08 microns     | 13/32"               | 4 lg. x 5/8 O.D.<br>x.010" Wall         | 5/8 x 5-7/8<br>(3 Pin Base)         | Unimited by use                   | X-Ray                         |  |
| 30-40 mg/cm <sup>2</sup>                                 | -                    | 7 lg. x 5/8 O.D.                        | 5/8 O.D. x 11-25/32<br>(4 Pin Base) | Unh                               | Beta & Gamma                  |  |
| 1.5 - 2.0 mg/cm <sup>2</sup>                             | 25/32''              | 1/2 lg. x 25/32 O.D.<br>x 3/64 Wall     | 1-1/32 x 1-9/32                     |                                   | Beta                          |  |
| 10 mg/cm <sup>2</sup>                                    | 1-3/32"              | 23/32 lg. x 1-3/32 l.D.<br>x 1/16 Wall  | 1-11/32 x 1-15/32                   | ļ                                 | Beta                          |  |
| -                                                        | -                    | -                                       | -                                   |                                   | Gamma &<br>Cosmic Ray         |  |
|                                                          |                      |                                         | 1                                   | -                                 | Gamma &                       |  |

Also available with 3 Pin Base, specify Type 912NB-3. Overall tube length = 11-3/8".
\* Shielded with 2" mercury within 4" iron.

#### MAGNETRONS

| Type     | Description             | Freq. Range            | He        | ater        | EA        | I <sub>A</sub> | Duty   | Pulling<br>Figure | Type 1 | Pulse<br>Dur. | P₀(K₩)    |
|----------|-------------------------|------------------------|-----------|-------------|-----------|----------------|--------|-------------------|--------|---------------|-----------|
| <u> </u> |                         | mc/sec.                | Volts     | Amps        | (KV)      | (Amps)         | ,      | (Me)              | Output | (µsec.)       | 1 0(1(1)) |
| 5J26     | Osc. Tunable            | 1220-1350              | 23.5      | 2.2         | 28        | 46             | .001   | -                 | со     | 1             | 600       |
| 5609     | CW Osc. Fixed Freq.     | 2425-2475              | 6.3       | 3.8         | 1.47      | 0.125          | CW     | 6                 | со     | CW            | .115      |
| 7090     | CW Osc. Fixed Freq.     | 2425-2475              | 5,3       | 3.2         | 1.6       | 0.200          | CW     | 5                 | со     | CW            | . 200     |
| 7091     | CW Osc. Fixed Freq.     | 2425-2475              | 5         | 32          | 4.5       | 0.75           | CW     | 4                 | со     | CW            | 2.5       |
| 7292     | Same as 7091 except liq | uid cooled, 7091       | is forced | air cooled. | •         |                |        |                   | •      | ,             |           |
| 5586     | Osc, Tunable            | 2700-2900              | 16.0      | 3           | 27-32     | 70             | .0005  | 15                | со     | 1             | 800       |
| 5657     | Osc. Tunable            | 2900-3100              | 16.0      | 3           | 27.5-32.5 | 70             | .0005  | 15                | со     | 1             | 800       |
| 6589     | Osc. Tunable            | 3350-3500              | 16.0      | 3           | 26-30     | 50             | .0005  | 10                | WG     | 1             | 500       |
| 4J59     | Osc. Fixed Freq.        | 6275-6375              | 12.6      | 3,5         | 16-19     | 30             | .001   | 15                | WG     | 1             | 210       |
| 4J58     | Osc. Fixed Freq.        | 6375-6475              | 12.6      | 3.5         | 16-19     | 30             | .001   | 15                | WG     | 1             | 210       |
| 4J57     | Osc. Fixed Freq.        | 6475-6575              | 12.6      | 3.5         | 16-19     | 30             | .001   | 15                | WG     | 1             | 210       |
| 2J51     | Osc. Tunable            | 8500-9600              | 6.3       | 1.0         | 14        | 14             | .001   | 18                | WG     | 1             | 63        |
| 2J51A    | Osc. Tunable Hi-Stab.   | 8500-9600              | 6.3       | 1.0         | 14        | 14             | .00033 | 18                | ₩G     | 0.1           | 60        |
| DX125    | Osc. Tunable            | 8500-9600              | 20        | 4           | 28-34     | 25             | .001   | 16                | WG     | 1             | 225       |
| 4J78     | Osc. Fixed Freq.        | 9003-9168              | 13.7      | 3.5         | 20-23     | 27.5           | .001   | 15                | WG     | 1             | 225       |
| 55032    | Osc. Fixed Freq.        | 9003-9168              | 13.7      | 3.5         | 20-23     | 27.5           | .001   | 17.5              | WG     | 1             | 225       |
| 55031    | Osc. Fixed Freq.        | 9168-9345              | 13.7      | 3.5         | 20-23     | 27.5           | .001   | 17.5              | WG     | 1             | 225       |
| JP9-7A   | Osc. Fixed Freq.        | 9210-9270              | 6.3       | .6          | 5.5       | 4.5            | .001   | 15                | WG     | 1             | 7         |
| 7028     | Osc. Fixed Freq,        | 9345-9475              | 6.3       | .5          | 3.5       | 2,5            | ,0002  | 14                | WG     | 0.1           | 3         |
| 2J42     | Osc. Fixed Freq.        | 9345-9405              | 6.3       | .6          | 5.5       | 4.5            | .001   | 15                | WG     | 1             | 7         |
| JP9-7D   | Osc. Fixed Freq.        | 9345-9405              | 6.3       | .6          | 5.5       | 5.5            | .0001  | 15                | WG     | 0.1           | 8         |
| JP9-15   | Osc. Fixed Freq.        | 9345-9405              | 6.3       | .6          | 6.5-8     | 6.5            | .001   | 18                | ŴĠ     | 2             | 19.5      |
| 725A     | Osc. Fixed Freq.        | 9345-9405              | 6.3       | 1.0         | 12        | 12             | .001   | 15                | WG     | 1             | 50        |
| 6972     | Osc. Fixed Freq.        | 9345-9405              | 10        | 2.8         | 15        | 15             | .0002  | 15                | WG     | 0.1           | 75        |
| 4J52A    | Osc. Fixed Freq.        | $9375\pm25\mathrm{MC}$ | 12.6      | 2.2         | 15        | 15             | .001   | 15                | WG     | 5             | 80        |
| 4J50     | Osc. Fixed Freq.        | 9345-9405              | 13.7      | 3,5         | 20-23     | 27.5           | .001   | 15                | WG     | 1             | 225       |
| 55030    | Osc. Fixed Freq.        | 9345-9405              | 13,7      | 3.5         | 20-23     | 27,5           | .001   | 17.5              | WG     | 1             | 225       |
| 55029    | Osc, Fixed Freq.        | 9405-9505              | 13.7      | 3.5         | 20-23     | 27,5           | .001   | 17.5              | WG     | 1             | 225       |
| 7093     | Osc. Fixed Freq.        | 34, 512-35, 208        | 4         | 4           | 13,5-15   | 15.5           | .0001  | 40                | WG     | 0.02          | 25        |
| DX164    | Osc. Fixed Freq.        | 75,000                 | 4.8       | 4.0         | 13        | 10             | .0002  | -                 | WG     | 0.1           | 25        |

- -- -

٦

,

1 CO = Coaxial WG = Waveguide

#### **COLD CATHODE TRIGGER TUBES**

| TYPE NO. | Plate<br>Valtage<br>(volts) | Starter<br>Ignition<br>Current<br>(µA) | Plate<br>Burning<br>Voltage<br>(volts) | Plate<br>Burning<br>Current<br>(mA) | DESCRIPTION                                                                                                                                                                             |
|----------|-----------------------------|----------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z50T     | 130                         | 50                                     | 61                                     | 2-6                                 | Designed for "on-off" control applications in low current electrical circuits and relays. Visual control is possible by presence of a bluish glow.                                      |
| Z70U     | 250                         | 20                                     | 118                                    | 3                                   | Subminiature trigger tube equipped with priming cathode for operation of the tube independent of lighting conditions. Designed for use in D.C. counting, switching, and timer circuits. |
| Z300T    | 140                         | 55                                     | 70                                     | 25                                  | Designed for operation in welding timers, relay and counting circuits, power switching and similar applications.                                                                        |
| Z804U    | 180                         | 50                                     | 106-115                                | 20                                  | Relay tube with negative starter voltage designed for relay applications with a negative d.c. trigger voltage or a 220 volt a.c. trigger voltage.                                       |
| 5823     | 175                         | 160<br>max                             | 62                                     | 25                                  | Miniature relay type designed for "on-off" control applications in low current electrical circuits and relays.                                                                          |

#### **KLYSTRONS**

| Type   | Description             | Freg. Range   | He    | ater | Beam<br>Voltage | Reflector<br>Voltage | Beam<br>Current | ETR     | P₀(₩) |
|--------|-------------------------|---------------|-------|------|-----------------|----------------------|-----------------|---------|-------|
|        | ·                       | mc/sec.       | Volts | Amps | (volts)         | (volts)              | (mA)            | mc/sec. | • • • |
| 55334  | Osc. Multireflex,       | 3336-3414     | 6,3   | . 75 | 3000            | 850                  | 24              | -       | 10    |
| 2K25   | Osc. Reflex, Tunable    | 8500-9660     | 6.3   | . 44 | 300             | 85-200               | 25              | 35      | . 025 |
| DX122  | Osc. 2 cav. Fixed Freq. | 8500-10,500   | 11    | 1.2  | 2750            | -                    | 35              | -       | 5     |
| DX123  | Osc. 2 cav. Fixed Freq. | 8500-10, 500  | 11    | 1.2  | 4350            | -                    | 71              | -       | 33    |
| DX124  | Osc. 2 cav. Fixed Freq. | 8500-10, 500  | 11    | 1.2  | 8800            | -                    | 180             | -       | 210   |
| 723A/B | Osc. Reflex, Tunable    | 8702- 9,548   | 6.3   | . 44 | 300             | 130-185              | 25              | 40      | .030  |
| DX184  | Osc. Reflex, Tunable    | 31,000-36,000 | 6.3   | . 8  | 2250            | 100-500              | 15              | 60      | .100  |
| DX151  | Osc. Reflex, Tunable    | 68,000-75,000 | 3.5   | 1.8  | <b>2</b> 400    | 300                  | 17              | 100     | .100  |

#### **VOLTAGE REFERENCE & REGULATOR TUBES**

| TYPE NO.     | Operating<br>Voltage<br>(Approx.<br>Volts) | Operating<br>Valtage<br>Limits <sup>‡</sup><br>(Valts) | Recommended<br>Quiescent<br>Current<br>(Milliamperes) | lgnition<br>Voltage <sup>2</sup><br>(Volts) | internal<br>Resistance<br>(Max.<br>Ohms) | Current<br>Range<br>(Milliamperes) | Regulation <sup>3</sup><br>(Max.<br>Volts) |
|--------------|--------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------|
| OA2          | 150                                        | 144-164                                                | 17.5                                                  | 185 max.                                    | 240                                      | 5-30                               | 6                                          |
| OB2          | 108                                        | 106-111                                                | 17.5                                                  | 133 max.                                    | 140                                      | 5-30                               | 3.5                                        |
| OE3/85A1 6 5 | 85                                         | 83-87                                                  | 4                                                     | 120 max.                                    | -                                        | 1-8                                | 3,15                                       |
| OG3/85A2 6 5 | 85                                         | 83-87                                                  | 6                                                     | 125 max.                                    | 450                                      | 1-10                               | 4                                          |
| 90C1         | 90                                         | 86-94                                                  | 20                                                    | 125 max.                                    | 350                                      | 1-40                               | 14                                         |
| 5651 6       | 87                                         | 82-92                                                  | 2,5                                                   | 115 min.                                    | -                                        | 1,5-3,5                            | 3                                          |
| 6354/150B2   | 150                                        | 146-154 4                                              | 10                                                    | 180 max,                                    | 500                                      | 5-15                               | 5                                          |

1 Spread in operating voltage from tube to tube at recommended quiescent current

2 Over tube life

9 Over full current range \* Voltage Reference Tubes <sup>5</sup> Drift in operating voltage during the first 300 hours of life: max. 0,3%. Short term drift in operating voltage (100 hours max.) after the first 300 hours of operation: max. 0,1%. Temperature coefficient of operating voltage = -2.7 mV/°C
6 Drift in operating voltage during 1000 hours: max. 1%

75 ° - 4- 5

#### **NOISE DIODES**

| Туре | Description            | Heater |      | Ignition<br>Voltage | Anode.<br>Voltage | Anode<br>Current | Noise<br>Level | Frequency |  |
|------|------------------------|--------|------|---------------------|-------------------|------------------|----------------|-----------|--|
|      |                        | Volts  | Amps | (volts)             | (volts)           | (mÅ)             | (db)           | Range     |  |
| K50A | Gas filled noise diode | 2      | 2    | 6000                | 165               | 125              | 18, 7          | X-Band    |  |
| K51A | Gas filled noise diode | 2      | 3.5  | 6000                | 140               | 200              | 19.1           | S-Band    |  |

#### TRAVELING WAVE TUBES

| Type | Description | Freq. Range<br>Kmc/sec. | Type<br>Output | Heater |      | Helix<br>Valtage | Mag.<br>Field | Gain | Power<br>Output |  |
|------|-------------|-------------------------|----------------|--------|------|------------------|---------------|------|-----------------|--|
|      |             |                         |                | Volts  | Amps | (volts)          | (Gauss)       | (db) | Watts           |  |
| 2EO  | Amplifier   | 3,8 - 4,2               | Waveguide      | 6.3    | 0.8  | 1100             | 600           | 37   | _ 5             |  |
| 7537 | Amplifier   | 4.4 - 5                 | Waveguide      | 6.3    | 0.8  | 1100             | 600           | 34   | 3.5             |  |

#### IGNITRONS-WELDER CONTROL SERVICE

| TYPE NO.  | R.M.S.<br>Volts | Max. KVA E<br>Correspondin<br>Curre | g Average | Max. Averag<br>Correspon<br>Der | Type<br>Cooling |       |
|-----------|-----------------|-------------------------------------|-----------|---------------------------------|-----------------|-------|
|           | Range           | K.V.A.                              | Amps      | K.V.A.                          | Amps            |       |
| 5555/653B | 2400            | 2400                                | 135.0     | 1105                            | 207             | Water |
| 5822-A    | 220-600         | 424                                 | 20        | 188                             | 70              | Water |

#### IGNITRONS-RECTIFIER SERVICE

| TYPE NO.  | Typical D.C.<br>Output<br>Voltage (v) | Max. Peak<br>Inverse &<br>Forward<br>Voltage (v) | Max. Peak<br>Anode<br>Current<br>(A) | Max. Continuous<br>Average Anode<br>Current<br>(A) | Max.<br>Average<br>Current (A)<br>I minute | Type<br>Cooling |
|-----------|---------------------------------------|--------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------|
| 5555/653B | 300 1                                 | 2100                                             | 1800                                 | 200                                                | 400                                        | Water           |
|           | 600 1                                 | 2100                                             | 1200                                 | 150                                                | 300                                        |                 |

<sup>1</sup> Six-phase, double Y, single way circuits.

#### **RECTIFIERS-DIODES**

· · · · ·

|         | File  | iment                                 | Fil.<br>Heating | Tube<br>Drop     | Peak Inverse<br>Anode Volts           | Anode        | Current         | Surge<br>Current | Temperature<br>°C |
|---------|-------|---------------------------------------|-----------------|------------------|---------------------------------------|--------------|-----------------|------------------|-------------------|
| TYPE NO | Volts | Amps                                  | Time<br>(sec)   | Valts            | Volts                                 | Peak<br>Amps | Averago<br>Amps | Amps             | Ambient           |
| 1S2A    | 1.4   | 0.55                                  | _               |                  | 22,000<br>(absolute<br>max)           | 0.04         | _               | -                | -                 |
| 3B-28   | 2.5   | 5.0                                   | 5               | 10.0             | 10,000                                | 1.0          | 0,250           | -                | _                 |
| 4B-32   | 5.0   | 7.5                                   | - 30            | 10.0             | 10,000                                | 5.0          | 1.25            | 50.0             | -                 |
| 6R3     | 6.3   | 0.81                                  |                 | -                | 5,000                                 | 0.45         | 0.15            | -                | -                 |
| 249-В   | 2.5   | 7.5                                   | 15              | 15.0             | 7,500                                 | 2.5          | 0.640           | -                |                   |
| 575-A   | 5.0   | 10.0                                  | 30              | 10.0             | 15,000                                | 6.0          | 1.5             | 60,0             | 1                 |
| 673     | 5.0   | 10,0                                  | 30              | 10.0             | 15,000                                | 6.0          | 1.5             | 60.0             | -                 |
| 857-B   | 5,0   | 30.0                                  | 60              | 10.0             | 22,000                                | 40.0         | 10,0            | 400.0            | -                 |
| 866-AX  | 2.5   | 5.0                                   | 20              | 10.0             | 10,000                                | 1.0          | 0.250           | -                | -                 |
| 869-B   | 5.0   | 18.0                                  | 60              | 10.0             | 20,000                                | 10.0         | 2,50            | -                |                   |
| 869-BL  | 5.0   | 18.0                                  | 60              | 10.0             | 20,000                                | 10.0         | 2,50            | -                |                   |
| 872-AX  | 5.0   | 7,5                                   | 30              | 10.0             | 10,000                                | 5.0          | 1.25            | 50.0             | -                 |
|         |       | · · · · · · · · · · · · · · · · · · · |                 |                  | · · · · · · · · · · · · · · · · · · · |              | WITH LIQUI      | D COOLING        |                   |
| 6339    | 6.3   | 1,5                                   | 30              | -                | 16,000<br>10,000                      | 0.250        | 0.065<br>0.100  | -                | -65 to +165°      |
|         |       |                                       |                 | ļ                |                                       | WITH         | OUT COOLING -   | AIR OPERATI      | ION               |
|         |       |                                       |                 |                  | 12,000                                | 0,200        | 0.050           | -                | -55 to +85°       |
| 6508    | 5.0   | 12.5                                  | 90              | 12.0             | 21,000                                | 10,0         | 2.5             | 100.0            | _                 |
| 6693    | 5.0   | 11.5                                  | 60              | 12.0             | 2,500                                 | 10.0         | 5.0             | 200.0            | +15 to +55°       |
|         |       |                                       |                 |                  | 15,000                                | 12.0         | 3.0             | 120.0            | +15 to +35°       |
| 7136    | 5.0   | 11.5                                  | 60              | 12.0             | 15,000                                | 12,0         | 2,5             | 120.0            | +15 to +35°       |
| 8008-AX | 5.0   | 7.5                                   | 30              | 10.0             | 10,000                                | 5.0          | 1,25            | 50.0             | -                 |
| 8020-AX | 5.0   | 6.0                                   | 5               | 200V<br>at 100ma | 40,000                                | 0.750        | 0.100           | -                | -                 |

#### **IGNITRONS-THERMOSTATICALLY CONTROLLED**<sup>1</sup>

| TYPE ND. | R.M.S.<br>Volts | Max. KVA Demand &<br>Corresponding Average<br>Current |       | Max. Averag<br>Correspon<br>Dem | Type<br>Cooling |         |
|----------|-----------------|-------------------------------------------------------|-------|---------------------------------|-----------------|---------|
|          | Range           | K.V.A.                                                | Amps  | K.V.A.                          | Amps            | Cooling |
| 5551-A   | 250-600         | 600                                                   | 30, 2 | 200                             | 56              | Water   |
| 5552-A   | 250-600         | 1200                                                  | 75.6  | 400                             | 140             | Water   |
| 5553-B   | 250-600         | 2400                                                  | 192.0 | 800                             | 355             | Water   |
| 5822-A   | 220-600         | 424                                                   | 20.0  | 188                             | 70              | Water   |
| 7585     | 220-600         | 1200                                                  | 75, 6 | 400                             | 140             | Water   |

1 These tubes are identical with the corresponding types 5551, 5552 and 5553 except that they are fitted with a "sensing" plate for adaptation of a thermostat. They do not include the thermostat or thermostat mounting under these designations. If thermostatic control is required, one of the following accessory groups should be ordered with each tube:

(A) AMPEREX "Water Saver" Thermostat Assembly, Cat. No. 5-17024. (Consists of Thermostat Nose May, Cat. Ro. 7-51, mounting clamp, terminal block and four sets of nuts, bolts and washers)

(B) AMPEREX "Overload Protection" Thermostat Assembly, Cat. No. S-17025. (Consists of Thermostat No. C 4391-7-52, mounting clamp, terminal block and four sets of nuts, bolts and washers)

| Range       | DESCRIPTION                                                                                                                                                                                                                                                                                                         | TYPE NO. |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| Mercury     |                                                                                                                                                                                                                                                                                                                     |          |  |  |  |  |
| -           | Miniature half-wave vacuum rectifier designed for use in high voltage, low current applications in TV scanning systems.                                                                                                                                                                                             | 1S2A     |  |  |  |  |
| -           | Xenon gas filled half-wave rectifier with wider temperature ranges than mercury-vapor tubes. Used largely by armed services to replace 866-A's.                                                                                                                                                                     | 3B-28    |  |  |  |  |
| -           | Xenon gas filled half-wave rectifier with wider temperature ranges than mercury-vapor tubes. Used largely by armed services to replace 872-A's.                                                                                                                                                                     | 4B-32    |  |  |  |  |
| -           | Booster diode designed for application in line time-base circuits in television receivers.                                                                                                                                                                                                                          | 6R3      |  |  |  |  |
| +25 to +70° | Convection-cooled mercury-vapor half-wave rectifier. Used in most Western Electric r-f equipment.                                                                                                                                                                                                                   | 249-B    |  |  |  |  |
| +20 to +50° | Convection-cooled mercury-vapor half-wave rectifier. Refer to 7136 for improved version.                                                                                                                                                                                                                            | 575-A    |  |  |  |  |
| +20 to +50° | Convection-cooled morcury-vapor half-wave rectifier. Refer to 6693 for improved version.                                                                                                                                                                                                                            | 673      |  |  |  |  |
| +30 to +40° | Mercury-vapor half-wave rectifier with low voltage drop. Extremely popular in most high power broadcasting stations.<br>Convection cooled.                                                                                                                                                                          | 857-B    |  |  |  |  |
| +25 to +70° | Mercury-vapor half-wave rectifier of Amperex own design. More rugged trouble-free operation at only slight addi-<br>tional cost. Convection cooled.                                                                                                                                                                 | 866-AX   |  |  |  |  |
| +30 to +40° | Mercury-vapor half-wave rectifier. Refer to type 6508, economy version.                                                                                                                                                                                                                                             | 869-B    |  |  |  |  |
| +30 to +40° | Electrically same as 869-B. Base has flexible filament leads with spade lugs for better, low-resistance contact with socket.                                                                                                                                                                                        |          |  |  |  |  |
| +20 to +60° | Mercury-vapor half-wave rectifier. Universally used by almost every user and designer of H-V equipment. Convection cooled.                                                                                                                                                                                          | 872-AX   |  |  |  |  |
|             | High vacuum clipper diode and rectifier. Miniature version of 3B29 for liquid immersion cooling or air operation.                                                                                                                                                                                                   | 6339     |  |  |  |  |
| +25 to +45° | Mercury vapor rectifier for relatively high voltage and current. A high quality, long-life tube priced lower than any tube in its class on the market.                                                                                                                                                              | 6508     |  |  |  |  |
| +25 to +75° | Single-anode, mercury vapor rectifier with ratings, intermediate between standard types 575A and 869B. Delivers                                                                                                                                                                                                     | 6693     |  |  |  |  |
| +25 to +55° | 9 amps up to 12 KV in a full wave, 3 phase power supply. Three tubes in a three phase half-wave power supply deliver<br>6 KV ay 9 amps using only one filament transformer. Has large contact area, industrial base preventing base contact<br>oxidation. Priced low for replacement market and original equipment. |          |  |  |  |  |
| +25 to +55° | Single anode, mercury vapor, high voltage rectifier. Plate current ratings intermediate between types 575-A and 6693.<br>Cathode and anode design similar to 6693 but with 575-A base. Recommended replacement for 575-A in older equip-<br>ment. For new equipment dosign, the 6693 is recommended.                | 7136     |  |  |  |  |
| +20 to +60° | Mercury-vapor half-wave rectifier similar to 872-A characteristics; with heavy long pin industrial base. Used by armed services and in commercial applications. Convection cooled.                                                                                                                                  | 8008-AX  |  |  |  |  |
|             | Half-wave, high vacuum rectifier with high inverse voltage and low average current. Used in radar and precipitator power supplies.                                                                                                                                                                                  | 8020-AX  |  |  |  |  |

## **SEMICONDUCTORS**

#### **GERMANIUM DIODES** \*

|         |                    |                    |                                                | Max. Continuous<br>Operating<br>Inverse Voltage | Maximum Peak<br>Inverse Voltaae |                | Maximum Average<br>Rectified Current |                | Forward<br>nt(MA) At           |
|---------|--------------------|--------------------|------------------------------------------------|-------------------------------------------------|---------------------------------|----------------|--------------------------------------|----------------|--------------------------------|
|         | Single Ended - Typ | e 1                | Description                                    | (Valts)                                         | (Volts)                         | (MA)           | (MA)                                 | +1 Volt        | +3 Volts                       |
|         | OA5                |                    | High-Current Computer<br>Switching Gold Bonded | 100                                             | 100                             | 350            | 115                                  | 200            |                                |
|         | OA7                |                    | High-Current Computer<br>Switching Gold Bonded | 15                                              | 25                              | 50             | 50                                   | 8 at . 4V      | 30 at 0.56                     |
|         | OA9                |                    | High-Current Computer<br>Switching Gold Bonded | 25                                              | 25                              | 500            | 100                                  | 90 at.4V       | 500 at.9V                      |
| Clip In | Solder-In          | Subminature        |                                                |                                                 |                                 |                |                                      |                |                                |
| 1N34A   | 1N34               |                    | General Purpose                                | 60                                              | 75                              | 150            | 50                                   | 5              |                                |
| 1N38A   | 1N38               |                    | High Peak Voltage                              | 100                                             | 120                             | 150            | 50                                   | 4              |                                |
| 1N54A   | 1N54               |                    | High Back Resistance                           | 50                                              | 75                              | 150            | 50                                   | 5              |                                |
| 1N58A   | 1N58               |                    | High Peak Voltage                              | 100                                             | 120                             | 150            | 50                                   | 4              |                                |
|         | 1N60               |                    | Video Detector                                 | 25                                              | 30                              | 150            | 50                                   |                | 55 volts output<br>) K ohms to |
| 1N63    |                    |                    | High Back Resistance                           | 100                                             | 125                             | 150            | 50                                   | 4              |                                |
|         |                    | 1N67A              | High Back Resistance                           | 80                                              | 100                             | 90             | 30                                   | 4              |                                |
|         | <u>.</u>           | 1N68A              | High Peak Voltage                              | 100                                             | 130                             | 90             | 30                                   | 3              |                                |
|         | 1N87               | 1N87A              | Video Detector                                 | 25                                              | 30                              | 150            | 50                                   | 0.1 at 0.25 V. |                                |
|         | 1N88               |                    | D.C. Restorer                                  | 85                                              | 110                             | 150            | 50                                   | 2.5            |                                |
|         |                    | 1N89               | General Purpose                                | 80                                              | 100                             | 90             | 30                                   | 3.5            |                                |
|         |                    | 1 <b>N</b> 90      | General Purpose                                | 60                                              | 75                              | 90             | 30                                   | 5              |                                |
|         |                    | 1N95               | General Purpose                                | 60                                              | 75                              | 90             | 30                                   | 10             |                                |
|         |                    | 1N99               | High Back Resistance                           | 80                                              | 100                             | 90             | 30                                   | 10             | [                              |
|         |                    | 1N116              | High Back Resistance                           | 60                                              | 75                              | 90             | 30                                   | 5              |                                |
| _       |                    | 1N117              | High Back Resistance                           | 60                                              | 75                              | 90             | 30                                   | 10             |                                |
| 1N119 1 | 1N480 1            | 1N191 <sup>1</sup> | Computer                                       | 60                                              | 90                              | 150            | 35                                   | 5              | 400 Kohms a                    |
| 1N120 1 | 1N490 1            | 1N192 <sup>1</sup> | Computer                                       | 60                                              | 90                              | 150            | 35                                   | 5              | 200 K ohms a                   |
|         |                    | 1N126              | General Purpose                                | 60                                              | 75                              | 90             | 30                                   | 5              |                                |
|         |                    | 1N128              | General Purpose                                | 40                                              | 50                              | 90             | 30                                   | 3              |                                |
|         |                    | 1N198              | General Purpose                                | 80                                              | 100                             | 90             | 30                                   | 5              |                                |
| 1N477 2 | 1N476 <sup>3</sup> |                    | High Peak Voltage                              | 90                                              | 115                             | 150            | 50                                   | 3              | 25                             |
| 1N479 3 | 1N478 <sup>3</sup> |                    | High Peak Voltage                              | 90                                              | 115                             | 150            | 50                                   | 5              | 30                             |
|         | 1N541              |                    | A.M. Detector                                  | 30                                              | 45                              | 100            | 10                                   | 1.5            | 18                             |
|         | 1N542              | · · ·              | FM Ratio Detector                              |                                                 | The 1N5                         | 42 is a matche | d pair of 1N541                      | diodes         | L                              |
|         | 1N616 3            |                    | Video Detector                                 | 30                                              | 40                              | 150            | 30                                   | 8              |                                |
|         |                    | 1N617 3            | High Peak Voltage                              | 90                                              | 115                             | 150            | 50                                   | 3              | 25                             |
|         |                    | 1N618 >            | High Peak Voltage                              | 90                                              | 115                             | 150            | 50                                   | จิ             | 35                             |
|         |                    | 1N698 5            | Gold Bond Computer                             | 15                                              | 25                              | 50             | 50                                   | 0.1 at 0.23V   | 50 at 0. 73V                   |

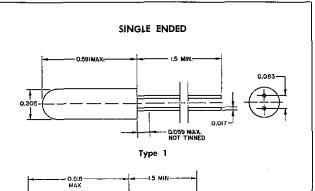
1 Reverse recovery time for these diodes is specified and defined as the time required for the diode to recover to a given reverse current when the operating voltage necessary to give 30 mA forward current is rapidly switched to -35 volts.

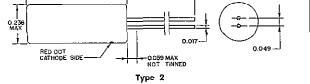
|               | Recovery Time ( $\mu$ sec.) | Reverse Current ( $\mu$ Amp) |
|---------------|-----------------------------|------------------------------|
| 1N119 & 1N480 | 0.5                         | 700                          |
|               | 3. 5                        | 87.5                         |
| 1N120 & 1N490 | 0.5                         | 700                          |
|               | 3. 5                        | 175                          |

<sup>2</sup> These values tested at 75°C.
<sup>3</sup> Both minimum and maximum limits are listed on detailed specifications. Characteristics are also specified at 60°C.
\*Characteristics at 25°C unless otherwise specified.

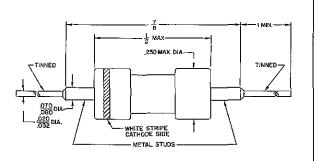
# 

|                           | Microamp                     | erse Current<br>is At        | 1                         | []            |                                       | Maximum Su<br>Current(M,<br>Maximum |
|---------------------------|------------------------------|------------------------------|---------------------------|---------------|---------------------------------------|-------------------------------------|
| -1.5 Volts                | -5 V alts                    | -10 Volts                    | -50 Volts                 | -75 Volts     | -100 Volts                            | Second                              |
| -5                        |                              | -6                           | -9                        |               | 30                                    | 500                                 |
| 0.35                      |                              | 0.75                         | 1.9 at 25 V               |               |                                       | 400                                 |
| 0.35                      |                              | 0.75                         | 1.9at25V                  |               |                                       | 800                                 |
|                           |                              | 30                           | 500                       | <u> </u>      | <u>_</u>                              | 500                                 |
| 5 at -3V                  |                              |                              |                           |               | 500                                   | 500                                 |
|                           |                              | 7                            | 100                       |               |                                       | 500                                 |
|                           |                              | 50                           |                           |               | 600                                   | 500                                 |
| in test cire<br>-10 volts | cuit,                        |                              |                           |               |                                       | 500                                 |
|                           |                              |                              | 50                        |               |                                       | 400                                 |
|                           | 5                            |                              | 50                        | -             |                                       | 250                                 |
|                           |                              |                              |                           |               | 625                                   | 350                                 |
| 25                        |                              | ct. eff. dan<br>ified test o | mping resist:<br>circuit. | ance = 3000 ( | ohms                                  | 400                                 |
|                           |                              |                              | 100                       |               |                                       | 400                                 |
|                           | 8                            | ·                            | 100                       |               |                                       | 250                                 |
|                           |                              |                              | 500                       |               |                                       | 250                                 |
|                           |                              |                              | 500                       | -<br>-        |                                       | 300                                 |
|                           | 5                            |                              | 50                        |               |                                       | 300                                 |
|                           |                              |                              | 100                       |               |                                       | 300                                 |
|                           |                              |                              | 1                         |               |                                       | 300                                 |
|                           |                              |                              | 100                       |               |                                       | 000                                 |
| 55°C, -20                 | to -50 volts                 |                              | 100                       | l             |                                       | 500                                 |
|                           | to -50 volts<br>to -50 volts | <u></u>                      |                           |               |                                       |                                     |
|                           |                              | 50                           | 100<br>850                | I             | · · · · · · · · · · · · · · · · · · · | 500                                 |
|                           |                              | <u>50</u><br>10              |                           |               |                                       | 500<br>500                          |
|                           |                              |                              |                           |               |                                       | 500<br>500<br>300                   |
|                           |                              | 10                           | 850                       | 180           | 275                                   | 500<br>500<br>300<br>300            |
|                           |                              | 10<br>75 2                   | 850<br>250 2              | 180           | 275<br>250                            | 500<br>500<br>300<br>300<br>300     |

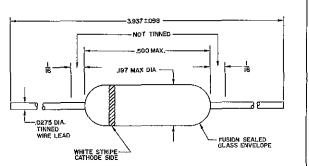

| 18  |     | 150 at-30V | 350 at-45 V | -<br>- |     | 200 |
|-----|-----|------------|-------------|--------|-----|-----|
|     |     | 11         | 87          | 180    | 275 | 500 |
| 4.5 | 5   | 7          | 50          | 115    | 250 | 500 |
| 1.0 | 2.0 | 4.5        | 30 at -25 V | -      | -   | 400 |


5. Reverse recovery time under following condition

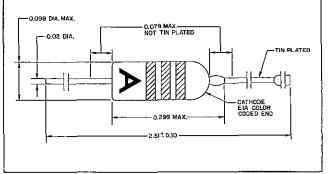
Square wave gen. freq. = 50Kc/s, 50% duty cycle Rise Time of gen < .02 usec. I<sub>f</sub> = 5 mA,  $V_r$  = -5 volts JAN 256 test circuit,  $R_L = 2000$  ohms


At: t = 0.5 usec.;  $I_r \leq 250$  uA t = 3.5 usec.;  $I_{r-} < 25$  uA

-----








SOLDER IN



SUBMINIATURE



#### SILICON DIODES

|             |                 | Max. Continuous<br>Operating Inverse<br>Voltage | Maximum Peak<br>Invorse Voltage |       | Maximum Average<br>Rectified Current |             | Forward<br>t (MA) At |
|-------------|-----------------|-------------------------------------------------|---------------------------------|-------|--------------------------------------|-------------|----------------------|
| Subminature | Description     | (Volts)                                         | (Volts)                         | (M A) | (MA)                                 | -1 Volt     | +3 Volts             |
| OA200       | General Purpose | 50                                              | 50                              | 150   | 50                                   | . 1 at. 53V | 30 at. 9V            |
| OA202       | General Purpose | 150                                             | 150                             | 100   | 30                                   | . 1 at. 53V | 30 at.9V             |
| S262        | General Purpose | 15 <sup>1</sup>                                 | 30 <sup>1</sup>                 |       | 30 <sup>1</sup>                      | 3           |                      |
| 1N456       | General Purpose | 25                                              | 30                              |       | 90                                   | 40          |                      |
| 1N457       | General Purpose | 60                                              | 70                              |       | 75                                   | 20          | -                    |
| 1N458       | General Purpose | 125                                             | 150                             |       | 55                                   | 7           |                      |
| 1N459       | General Purpose | 175                                             | 200                             |       | 40                                   | 3           |                      |
| 1N461       | General Purpose | 25                                              | 30                              |       | 60                                   | 15          |                      |
| 1N462       | General Purpose | 60                                              | 70                              |       | 50                                   | 5           |                      |
| 1N463       | General Purpose | 175                                             | 200                             |       | 30                                   | 1           |                      |
| 1N464       | General Purpose | 125                                             | 150                             |       | 40                                   | 3           |                      |

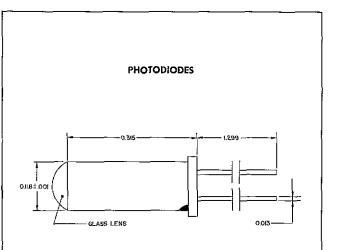
<sup>1</sup> These values tested at 55°C.

#### SILICON REFERENCE DIODES

| Single Ended Type 2 | Description                                  | Nominal Zener<br>Voltage (-Y <sub>Z</sub> )<br>(Volts) | Max. Zever<br>Current (-1 <sub>D</sub> )<br>(MA) | Dynamic Impedance<br>R <sub>Z</sub> at I <sub>Z</sub> =5mA<br>(ohms) |
|---------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|
| OAZ 200             | Voltage Reference For Low Current Stabilizer | 4.7                                                    | 40                                               | 60                                                                   |
| QAZ 201             | Voltage Reference For Low Current Stabilizer | 5.1                                                    | 40                                               | 50                                                                   |
| OAZ 202             | Voltage Reference For Low Current Stabilizer | 5.6                                                    | 40                                               | 25                                                                   |
| OAZ 203             | Voltage Reference For Low Current Stabilizer | 6.2                                                    | 40                                               | 6                                                                    |
| OAZ 204             | Voltage Reference For Low Current Stabilizer | 6.8                                                    | 40                                               | 4                                                                    |
| OAZ 205             | Voltage Reference For Low Current Stabilizer | 7.5                                                    | 40                                               | 4                                                                    |
| OAZ 206             | Voltage Reference For Low Current Stabilizer | 8.2                                                    | 40                                               | 4                                                                    |
| OAZ 207             | Voltage Reference For Low Current Stabilizer | 9.1                                                    | 40                                               | 4                                                                    |

#### PHOTODIODES

|        | Description                                                           | Max. Inverse<br>Voltage<br>(Volts) | Max. Inverse<br>Current<br>(mA) |
|--------|-----------------------------------------------------------------------|------------------------------------|---------------------------------|
| OAP 12 | Germanium Junction PN Alloy Type Metal Case With Glass<br>Lens On Top | 30                                 | 3                               |

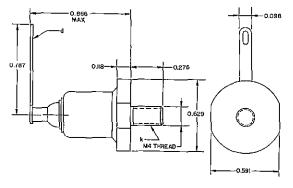

#### **RECTIFIER DIODES**

| <u>Germanium</u><br>Rectifier Type 1 | Description                        | Peak Inverse<br>Voltage<br>(Volts) | Average Forward<br>Current<br>(Amps) |
|--------------------------------------|------------------------------------|------------------------------------|--------------------------------------|
| OA 31                                | Power Rectifier Junction Diode     | 85                                 | 12                                   |
| Silicon<br>Rectifier Type 2          | -                                  | · · · · · · · · · · · · ·          |                                      |
| OA 210                               | 400 V Diode 500 mA Forward Current | 400                                | 0.5 1                                |
| OA 211 <sup>2</sup>                  | 800 V Diodc 400 mA Forward Current | 800                                | 0.4 1                                |
| OA 214 2                             | 700 V Diode 500 mA Forward Current | 700                                | 0.5 1                                |

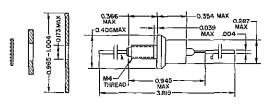
Sine wave input voltage and capacitive load.
 A heat sink with a minimum area of 2 sq. in. is required.

| -1.5 Volts | -5 Yolts | Ma≭imum Inv<br>(Microa<br>10 Volts | erse Current<br>mp <u>s) At</u><br>-50 Volts | -75 Volts | -100 Volts     | Maximum Surge<br>Current (MA)<br>Maximum] Second |
|------------|----------|------------------------------------|----------------------------------------------|-----------|----------------|--------------------------------------------------|
|            | <u> </u> |                                    | .05                                          |           | -100 10/13     |                                                  |
|            |          |                                    |                                              |           | .05 at 150 V   |                                                  |
|            |          | 150at15V <sup>1</sup>              |                                              |           |                | 300                                              |
|            |          |                                    | . 025at25 V                                  |           |                | 700                                              |
|            |          |                                    |                                              | .025at60V |                | 600                                              |
|            |          |                                    |                                              |           | . 025 at 125 V | 500                                              |
|            |          |                                    |                                              |           | .025at175V     | 400                                              |
|            |          |                                    | .5at25V                                      |           |                | 550                                              |
|            |          |                                    |                                              | . 5at60V  |                | 500                                              |
|            |          |                                    |                                              |           | .5at175V       | 400                                              |
|            |          |                                    |                                              |           | .5at125V       | 400                                              |

- 1-




| Reverse Current<br>at V <sub>D</sub> =2 V<br>(milli µA) | Typical Change<br>In Zener Voltage<br>With Tomperature<br>I <sub>Z</sub> = mA (mV/°CD) | Forword Voltage<br>At I <sub>D</sub> ≂10mA<br>(Volts) |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|
| 250                                                     | -2                                                                                     | 0. 72                                                 |
| 100                                                     | -1.8                                                                                   | 0.72                                                  |
| 30                                                      | -1.5                                                                                   | 0.72                                                  |
| 10                                                      | +1                                                                                     | 0.72                                                  |
| 10                                                      | +3                                                                                     | 0.72                                                  |
| 5                                                       | +4                                                                                     | 0.72                                                  |
| 5                                                       | +5.5                                                                                   | 0.72                                                  |
| 5                                                       | +6.5                                                                                   | 0.72                                                  |


| Sensitivity at T <sub>c</sub> =2500 ° K<br>N (µA/100 lux) | Dork Current<br>(T <sub>amb</sub> =25 ° C; V =-10V)<br>I <sub>0</sub> (µA) | Wave Length for<br>Max. Sensitivity<br>λm (μ) |
|-----------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|
| >5                                                        | < 15                                                                       | 1.55 (infra - red)                            |

| Pesk Forward<br>Current<br>(Amps) | Max. Load<br>Capacitance<br>(μ1) | Min. Circuit<br>Resistance<br>(Ohms) |
|-----------------------------------|----------------------------------|--------------------------------------|
| 12                                | 1000                             | -                                    |
|                                   | 200                              | 4                                    |
| 5                                 |                                  |                                      |
| 1                                 | 100                              | 8                                    |

RECTIFIERS



Type I

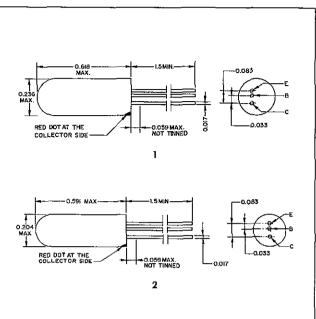


Type 2

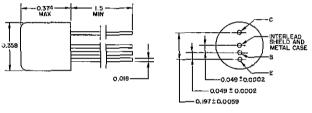
#### TRANSISTORS AF TYPES

|                                                                                      |                                       |                     |                      | Haximum re              | atings                      |                                                                                  |                                       |                           |                      |                            |
|--------------------------------------------------------------------------------------|---------------------------------------|---------------------|----------------------|-------------------------|-----------------------------|----------------------------------------------------------------------------------|---------------------------------------|---------------------------|----------------------|----------------------------|
|                                                                                      | Colle                                 | ctor-emitter voltag | <u>1</u>             | Peak<br>collector       | Max. Continuous<br>junction | Collector<br>dissipation                                                         | Current                               |                           | at<br><sup>I</sup> E |                            |
| Type                                                                                 | Peak<br>(V)                           | D.C.<br>(V)         |                      | current<br>(MA)         | temperature<br>(°C)         | at 25°C amb.<br>Pc (mW)                                                          | h <sub>fe</sub>                       |                           | nA)                  | - <sup>1</sup> сво<br>(µА) |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                              | (1)                                   |                     |                      | (1074)                  | ( 0)                        | . (()                                                                            | 1                                     | Signal Am                 |                      |                            |
| 00.50                                                                                | <u> </u>                              |                     |                      |                         |                             |                                                                                  | 1                                     |                           |                      |                            |
| OC 53                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 35                                    | 0.                        | . 25                 | 3.5                        |
| OC 54                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 55                                    | 0.                        | . 25                 | 3.5                        |
| OC 55                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 80                                    | 0,                        | . 25                 | 3,5                        |
| OC 56                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               |                                       |                           |                      | 3.5                        |
| OC 57                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 35                                    | 0,                        | . 25                 | 1,5                        |
| OC 58                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 55                                    | 0.                        | . 25                 | 1,5                        |
| OC 59                                                                                | г                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 80                                    | 0.                        | . 25                 | 1.5                        |
| OC 60                                                                                | 7                                     | 3                   |                      | 10                      | 55                          | 10                                                                               | 60                                    | 0.                        | . 25                 | 1.5                        |
| OC 75                                                                                | 30 <sup>2</sup>                       | 30                  | 2                    | 50                      | 75                          | 125                                                                              | 90                                    |                           | 3                    | 5                          |
| 2N279 11                                                                             | 30 2                                  | 30                  | 2                    | 50                      | 75                          | 125                                                                              | 30                                    | 0.                        | .5                   | 5                          |
| 2N280 12                                                                             | 30.2                                  | 30                  |                      | 50                      | 75                          | 125                                                                              | 50                                    |                           | 3                    | 5                          |
|                                                                                      | · · · · · · · · · · · · · · · · · · · |                     | I                    | <b>I</b>                |                             |                                                                                  | larae                                 | Signal Am                 | nlifier Ann          | lications                  |
| OC 26                                                                                | 32                                    | 16                  |                      | 3500                    | 90                          | 13000 4                                                                          | 33 2                                  | -                         | • • • •              | < 100                      |
| OC 30 10                                                                             | 32 2                                  |                     | 2                    | 1400                    | 75                          | 3600 6                                                                           | 35 9                                  |                           | 00                   | 12                         |
| OC 74 10                                                                             | %0 2                                  | 20                  | 2                    | 300                     | 75                          | 550 e                                                                            | 65 5                                  | 30                        | 00                   | 10                         |
| OC 79                                                                                | 26                                    | 26                  |                      | 300                     | 75                          | 550 в                                                                            | 42 3                                  | 30                        | 00 00                | 10                         |
| 2N281 10                                                                             | 32 7                                  | 32                  | 7                    | 250                     | 75                          | 165 8                                                                            | 70                                    |                           | 10                   | 4.5                        |
| <sup>1</sup> Thermal stat<br>2 Base-to-gro<br>3 Large-signal<br>RANSISTOR<br>F TYPES | und impedance<br>current gain         | < 500  ohms.        |                      | I                       | 5 Ba<br>6 To                | tal heat resistanc<br>se-to-ground imp<br>tal heat resistanc<br>se-to-ground imp | edance <10<br>e K = 14 <sup>0</sup> C | 0 ohms.<br>/W (junction t |                      |                            |
|                                                                                      |                                       |                     |                      | Maximum <u>ratin</u> as |                             |                                                                                  |                                       |                           | · · · ·              |                            |
| Ľ                                                                                    | Collector-emi                         | itter voltage 1     | Peak                 | Max. Continuous         | s Collector                 | Current gain                                                                     | -                                     |                           |                      |                            |
|                                                                                      | Peak                                  | - D.C.              | collector<br>current | junction<br>temperature | dissipation<br>at 25°C amb. |                                                                                  | at<br>I <sub>E</sub>                  | -1сво                     | -V <sub>CB</sub>     | fob                        |
| Туре                                                                                 | (V)                                   | (V)                 | (mA)                 | (°C)                    | Pc (m₩)                     | fe                                                                               | (mA)                                  | (µA)                      | (v)                  | (Hc/s)                     |
|                                                                                      |                                       |                     |                      |                         |                             | C                                                                                | onverter,                             | Mixer, Osc                | illator App          | lication                   |
| OC 44                                                                                | 15 ²                                  | 15 ²                | 10                   | 75                      | 83                          | 100                                                                              | 1                                     | 0.5                       | 2                    | 15                         |
| OC 45                                                                                | 15 2                                  | 15 z                | 10                   | 75                      | 83                          | 50                                                                               | 1                                     | 0,5                       | 2                    | 6                          |
|                                                                                      |                                       |                     |                      |                         |                             |                                                                                  |                                       | transfer<br>admittance    | input<br>conductance | input<br>capacitar         |
|                                                                                      |                                       |                     |                      |                         |                             |                                                                                  |                                       | micromhos                 | micromhos            | μμί                        |

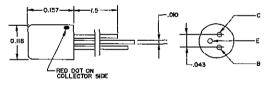
|                     | , .  |      |    |    |    |     |   | Y <sub>fe</sub> | g <sub>ie</sub> | Cie |
|---------------------|------|------|----|----|----|-----|---|-----------------|-----------------|-----|
| OC 169 3            | 20 * | 20 4 | 10 | 75 | 83 | 60  | 1 | 28000           | 3000            | 50  |
| OC 170 <sup>3</sup> | 20 * | 20 * | 10 | 75 | 83 | 100 | 1 | 30000           | 3000            | 65  |
|                     | 10   |      | 10 | 10 |    | 100 | - | 50000           |                 |     |
|                     |      |      |    |    |    |     |   | Y <sub>fb</sub> | <sup>g</sup> ib | Cib |
| OC 171 <sup>3</sup> | 20 # | 20 4 | 5  | 75 | 83 |     | - | 15000           | 20000           | _15 |


1 Thermal stability must be ensured

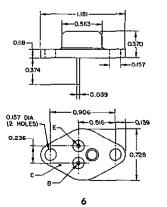
2 Base-to-ground impedance <1000 ohms


<sup>3</sup> Alloy-diffused Ge-PNP Transistor

|                                                                                                             |                                                                                                                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                         |                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Characteri                                                                                                  | istics at 2:                                                                                                                      | 5°C                                                                                                        | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                         | _                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |
| at                                                                                                          |                                                                                                                                   | fab                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at                                                           |                                                                                                                         | Outline                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |
| - <sup>у</sup> св<br>(Y)                                                                                    |                                                                                                                                   | (Mc/s)                                                                                                     | -У <sub>СВ</sub><br>(У)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | <sup>I</sup> E<br>(mA)                                                                                                  | drawing<br>No.                                                                                                                                        | Typical<br>application                                                                                                                                                                                                                                                                                                                    |
| Class A                                                                                                     |                                                                                                                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                             |                                                                                                                                   | , 0e-1                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                                                           |                                                                                                                                   |                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0.25                                                                                                                    | 5                                                                                                                                                     | Prestages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                           |                                                                                                                                   | ·,                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0.25                                                                                                                    | 5                                                                                                                                                     | Prestages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                           |                                                                                                                                   |                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0.25                                                                                                                    | 5                                                                                                                                                     | Prestages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                           |                                                                                                                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                         | 5                                                                                                                                                     | Output Stages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                          |
| 2                                                                                                           |                                                                                                                                   | 1.4                                                                                                        | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0,25                                                                                                                    | 5                                                                                                                                                     | Prestages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                           |                                                                                                                                   | 1.6                                                                                                        | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0.25                                                                                                                    | 5                                                                                                                                                     | Prestages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                           |                                                                                                                                   | 2.2                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0.25                                                                                                                    | 5                                                                                                                                                     | Prestages in<br>Hearing Aids                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                           |                                                                                                                                   | 1.6                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 0.25                                                                                                                    | 5                                                                                                                                                     | Output Stages<br>in Hearing Aids                                                                                                                                                                                                                                                                                                          |
| 4.5                                                                                                         |                                                                                                                                   | 0.75                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 3                                                                                                                       | 2                                                                                                                                                     | General Purpose<br>High Gain                                                                                                                                                                                                                                                                                                              |
| 4.5                                                                                                         |                                                                                                                                   | 0.45                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 0.5                                                                                                                     | 2                                                                                                                                                     | General Purpose                                                                                                                                                                                                                                                                                                                           |
| 4.5                                                                                                         |                                                                                                                                   | 0.5                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 3                                                                                                                       | 2                                                                                                                                                     | General Purpose                                                                                                                                                                                                                                                                                                                           |
| Class A                                                                                                     | <b>&amp; B</b>                                                                                                                    | (PNP,                                                                                                      | Ge Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pes)                                                         |                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |
| 0.5                                                                                                         | 5                                                                                                                                 | 0.15                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(                                                           | 000                                                                                                                     | 8                                                                                                                                                     | Medium Gain Power                                                                                                                                                                                                                                                                                                                         |
| 14                                                                                                          |                                                                                                                                   | 0.3                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                            | 100                                                                                                                     | 6                                                                                                                                                     | Medium Gain Power                                                                                                                                                                                                                                                                                                                         |
|                                                                                                             |                                                                                                                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |
| 9                                                                                                           |                                                                                                                                   | 1,5                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 50                                                                                                                      | 1                                                                                                                                                     | Large Signal Output<br>And Driver Stages                                                                                                                                                                                                                                                                                                  |
| · · · · · ·                                                                                                 |                                                                                                                                   | 1.5                                                                                                        | 6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 50<br>50                                                                                                                | 1                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |
| 9                                                                                                           |                                                                                                                                   | 1.2<br>0.9<br>«V<br>9 A                                                                                    | 6<br>6<br>7ith coo<br>1so ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ilable                                                       | 50<br>10<br>n 56200 an<br>in 7 volt y                                                                                   | 1<br>1<br>d heat sinlersion.                                                                                                                          | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>to f at least 0.5 sq. in.                                                                                                                                                                                                                                |
| 9<br>12<br>10<br>Characteristi                                                                              |                                                                                                                                   | 1.2<br>0.9<br>• V<br>9 A<br>10 A<br>11 A<br>12 A                                                           | 6<br>6<br>Vith coo<br>Iso ava<br>Iso ava<br>Iso ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matcher<br>as OC 70<br>as OC 71                                             | 1<br>1<br>d heat sinlersion.                                                                                                                          | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).                                                                                                                                                                                                             |
| 9<br>12<br>10<br><u>Characteristi</u><br>-Y <sub>CB</sub><br>(V)                                            | 3                                                                                                                                 | 1, 2<br>0, 9<br>• y<br>9 A<br>10 A<br>11 A<br>12 F                                                         | 6<br>6<br>7ith coo<br>1so ava<br>1so ava<br>1so ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matche-<br>as OC 70<br>as OC 71                                             | 1<br>1<br>d heat sinlersion.                                                                                                                          | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>to f at least 0.5 sq. in.                                                                                                                                                                                                                                |
| 9<br>12<br>10<br><u>Characterist</u>                                                                        | 3                                                                                                                                 | 1, 2<br>0, 9<br>• y<br>9 A<br>10 A<br>11 A<br>12 F                                                         | 6<br>6<br>Vith coo<br>lso ava<br>lso ava<br>lso ava<br>lso ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matche-<br>as OC 70<br>as OC 71                                             | 1<br>1<br>d heat sinlersion.                                                                                                                          | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical                                                                                                                                                                                                  |
| 9<br>12<br>10<br>Churacteristi<br>-V <sub>CB</sub><br>(V)<br>(PNP, G                                        | 3                                                                                                                                 | 1, 2<br>0, 9<br>• y<br>9 A<br>10 A<br>11 A<br>12 F                                                         | 6<br>6<br>Vith coo<br>lso ava<br>lso ava<br>lso ava<br>lso ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matche-<br>as OC 70<br>as OC 71                                             | 1<br>1<br>d heat sinh<br>ersion.<br>d pairs (2x<br>Mixer-os                                                                                           | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application                                                                                                                                                                                   |
| 9<br>12<br>10<br><i>Characteristi</i><br>-V <sub>CB</sub><br>(V)<br>(PNP, G                                 | з<br>Эе Тур                                                                                                                       | 1, 2<br>0, 9<br>• y<br>9 A<br>10 A<br>11 A<br>12 F                                                         | 6<br>6<br>7ith coo<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matches<br>as OC 70<br>as OC 71<br>Outline<br>drawing<br>No.                | 1<br>1<br>d heat sinh<br>ersion.<br>d pairs (2x<br>Mixer-os<br>In Mediuu                                                                              | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application                                                                                                                                                                                   |
| 9<br>12<br>10<br>Characteristi<br>-V <sub>CB</sub><br>(V)<br>(PNP, C                                        | 3<br><b>3e Typ</b><br>6<br>6<br>0 0 ot post                                                                                       | 1, 2<br>0, 9<br>e V<br>9 A<br>10 A<br>11 A<br>12 F<br>PCC<br>ecc<br>ecc<br>f                               | 6<br>6<br>Vith coo<br>lso ava<br>lso ava<br>lso ava<br>lso ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matchea<br>as OC 70<br>as OC 71<br>Outline<br>drowing<br>No.                | 1<br>1<br>d heat sinh<br>ersion.<br>d pairs (2x<br>Mixer-os<br>In Mediuu                                                                              | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application<br>cillator<br>n-wave receivers                                                                                                                                                   |
| 9<br>12<br>10<br><u>Characteristi</u><br>-V <sub>CB</sub><br>(V)<br>(PNP, C                                 | 3<br><b>3e Typ</b><br>6                                                                                                           | 1, 2<br>0, 9<br>e V<br>9 A<br>10 A<br>11 A<br>12 F<br>PCC<br>ecc<br>ecc<br>f                               | 6<br>6<br>7ith coo<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava<br>Iso ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ilable<br>ilable<br>ilable                                   | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matchea<br>as OC 70<br>as OC 71<br>Outline<br>drowing<br>No.                | 1<br>1<br>d heat sinh<br>ersion.<br>d pairs (2x<br>Mixer-os<br>In Mediuu                                                                              | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application<br>cillator<br>n-wave receivers                                                                                                                                                   |
| 9<br>12<br>10<br>Characteristi<br>-V <sub>CB</sub><br>(V)<br>(PNP, C<br>Output<br>-conductance              | 3<br>Ge Typ<br>6<br>6<br>Output<br>capacitar                                                                                      | 1, 2<br>0, 9<br>6 V<br>9 A<br>10 A<br>11 A<br>12 F<br>CC<br>at<br>trace (V)                                | 6<br>6<br>7ith coo<br>Iso ava<br>Iso a | ilable<br>ilable<br>ilable<br>ilable                         | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matchea<br>as OC 70<br>as OC 71<br>Outline<br>drowing<br>No.                | 1<br>1<br>d heat sinh<br>ersion.<br>d pairs (2x<br>Mixer-os<br>In Mediuu                                                                              | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application<br>cillator<br>n-wave receivers                                                                                                                                                   |
| 9<br>12<br>10<br>Characteristi<br>-V <sub>CB</sub><br>(V)<br>(PNP, G<br>Output<br>conductance<br>micromhas  | 3<br>Se Typ<br>6<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                            | 1. 2<br>0. 9<br>• V<br>9 A<br>10 A<br>11 A<br>12 F<br>• C<br>• C<br>• C<br>• C<br>• C<br>• C<br>• C<br>• C | 6<br>6<br>7ith coo<br>Iso ava<br>Iso a | ilable<br>ilable<br>ilable<br>ilable<br>(Mc/s)               | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matchea<br>as OC 70<br>as OC 71<br>Outline<br>drowing<br>No.                | 1<br>1<br>d heat sinh<br>ersion,<br>d pairs (2x<br>Mixer-os<br>In Mediuu<br>IF Ampli<br>Mixer-os<br>radio app                                         | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application<br>cillator<br>n-wave receivers                                                                                                                                                   |
| 9<br>12<br>10<br>Characteristi<br>-V CB<br>(V)<br>(PNP, G<br>Output<br>. conductance<br>micromhos<br>Boe    | 3<br><b>3</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>0</b> υτρυτ<br>capecitar<br>μμf<br><b>C</b> <sub>0</sub> ε                | 1, 2<br>0, 9<br>e V<br>9 A<br>10 A<br>11 A<br>12 f<br>e V<br>e V<br>CE<br>0 -6                             | 6<br>6<br>7ith coo<br>Iso ava<br>Iso a | ilable<br>ilable<br>ilable<br>ilable<br>(Me/s)<br>f          | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matches<br>as OC 70<br>as OC 71<br>Outline<br>drawing<br>No.<br>2<br>2      | 1<br>1<br>1<br>d heat sinh<br>ersion.<br>d pairs (2x<br>Mixer-os<br>In Medium<br>IF Ampli<br>Mixer-os<br>radio app<br>AM & FM<br>Mixer-os<br>wave rec | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application<br>cillator<br>n-wave receivers<br>liters in AM Receivers<br>cillator in IF automobile<br>lication; IF amplifier in<br>I receivers.<br>cillator in short-<br>eivers; IF amplifier |
| 9<br>12<br>10<br>Characteristi<br>-VCB<br>(V)<br>(PNP, C<br>Output<br>conductance<br>micromhos<br>Eoe<br>85 | 3<br><b>3</b><br><b>3</b><br><b>6</b><br><b>6</b><br><b>0</b> υτρυτ<br>capacitor<br>μμf<br><b>C</b> <sub>OE</sub><br><b>5</b> , 1 | 1, 2<br>0, 9<br>* V<br>9 A<br>10 A<br>11 A<br>12 F<br>0 C<br>of<br>* V<br>0 -6<br>5 -6                     | 6<br>6<br>/ith coo<br>lso ava<br>lso ava<br>lso ava<br>lso ava<br>lso ava<br>l<br>f<br>(mA)<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ilable<br>ilable<br>ilable<br>iilable<br>(Mc/s)<br>f<br>10.7 | 50<br>10<br>n 56200 an<br>in 7 volt v<br>in matches<br>as OC 70<br>as OC 71<br>Outline<br>drowing<br>No.<br>2<br>2<br>4 | 1<br>1<br>d heat sinh<br>ersion,<br>d pairs (2x<br>Mixer-os<br>In Mediuu<br>IF Ampli<br>Mixer-os<br>radio app<br>AM & FM<br>Mixer-os                  | And Driver Stages<br>Medium Power Output<br>Medium Power Output<br>And Driver<br>t of at least 0.5 sq. in.<br>2N281 = 2N282).<br>Typical<br>application<br>cillator<br>n-wave receivers<br>liters in AM Receivers<br>cillator in IF automobile<br>lication; IF amplifier in<br>I receivers.<br>cillator in short-<br>eivers; IF amplifier |


- 87 S




· - - -











#### TRANSISTORS INDUSTRIAL, SWITCHING, AND COMPUTER TYPES F

|             |                               |               |                              |                                 |                                                   | n ratings                                        | Maximur                       |                              |                 | ĺ          |
|-------------|-------------------------------|---------------|------------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------|-------------------------------|------------------------------|-----------------|------------|
| fal<br>(Mc/ | ot<br>-V <sub>CB</sub><br>(V) | -ICBO<br>(µA) | aț<br>I <sub>E</sub><br>(mA) | Current gain<br><sup>h</sup> fe | Collector<br>dissipation<br>at 25°C amb<br>PC(mW) | collector junction dis<br>cutrent femperature of | tter voltage 1<br>D.C.<br>(V) | Collector-emi<br>Peak<br>(V) | Туре            |            |
| icatio      | hing Appl                     | peed Switc    | High-s <sub>t</sub>          |                                 |                                                   |                                                  |                               |                              |                 |            |
| 2.5         | 10                            | 30            | 1000                         | 150 *                           | 10000 3                                           | 75                                               | 1000                          | 24 2                         | 32 2            | OC 22      |
| 2.5         | 10                            | 30            | 1000                         | 150 4                           | 10000 3                                           | 75                                               | 1000                          | 24 <sup>2</sup>              | 40 2            | OC 23      |
| 2.5         | 10                            | 30            | 1000                         | 150 4                           | 10000 <sup>3</sup>                                | 75                                               | 1000                          | 24 <sup>2</sup>              | 32 <sup>2</sup> | OC 24      |
| > 3         | 5                             | ব             | 15                           | <80                             | 83                                                | 75                                               | 125                           | 20                           | 20              | OC 46      |
| > 5. 5      | 5                             | <3            | 15                           | < 200                           | 83                                                | 75                                               | 125                           | 20                           | 20              | OC 47      |
| icatio      | hing Appl                     | peed Switcl   | Low-sp                       |                                 |                                                   |                                                  |                               |                              |                 |            |
| 0.2         | 0.5                           | < 100         | 1000                         | 32 4                            | 13000 3                                           | 90                                               | 6000                          | 60/80 5                      | 60/80 5         | OC 28      |
| 0.2         | 0.5                           | <100          | 1000                         | 90 4                            | 13000 3                                           | 90                                               | 6000                          | 32/48/60 c                   | 32/48/60 6      | OC 29      |
| 0.2         | 0.5                           | <100          | 1000                         | 50 4                            | 13000 3                                           | 90                                               | 6000                          | 32/48/60 6                   | 32/48/60 6      | OC 35      |
| 0.2         | 0.5                           | <100          | 1000                         | 70 4                            | 13000 3                                           | 90                                               | 6000                          | 32/60/80 7                   | 32/60/80 7      | OC 36      |
| 2.0         | 12                            | 10            | 600                          | 85 <sup>4</sup>                 | 550 10                                            | 75                                               | 600                           | 32                           | 32              | OC 80      |
| 0.9         | 10                            | 4.5           | 250                          | 45 4                            | 165 10                                            | 75                                               | 250                           | 32 B                         | 32 8            | 2N284 12   |
| 0.9         | 10                            | 4.5           | 250                          | 52 <sup>4</sup>                 | 165 <sup>10</sup>                                 | 75                                               | 250                           | 60 %                         | 60 9            | 2N284A     |
| icatio      | hing Appl                     | peed Switch   | High-sp                      |                                 |                                                   | ŧ                                                |                               | I                            |                 | <b>_</b> L |
|             |                               |               | 15                           | 45 4                            | 100                                               | 75                                               | 250                           | 20                           | 20              | OC 139 11  |
| > 3. 5      | 5                             | 0.8           | 10 1                         |                                 |                                                   |                                                  |                               |                              |                 |            |
| > 3.5       | 5<br>5                        | 0.8           | 15                           | 75 *                            | 100                                               | 75                                               | 250                           | 20                           | 20              | OC 140 11  |

| 114051 | -ppi | cunons |
|--------|------|--------|
|        |      |        |

| OC 200 | 25 | 25 | 50 | 150 | 250 | 20 | 1 | 0.01 | 10 | 1 |
|--------|----|----|----|-----|-----|----|---|------|----|---|
| OC 201 | 25 | 25 | 50 | 150 | 250 | 30 | 1 | 0.01 | 10 | 4 |

<sup>1</sup> Thermal stability must be ensured. <sup>2</sup> Base-to-ground impedance <100 ohms <sup>3</sup> Total heat resistance  $K = 5^{\circ}C/W$  (junction to ambient) <sup>4</sup> Large-signal current gain h<sub>FE</sub>

<sup>5</sup> Min. avalanche-voltage = 60 V at  $V_{BE} = 2 V$  and  $-I_C = 6 A$ Min. breakdown-voltage = 80 V at  $V_{BE} = 1 V$  and  $-I_C -3mA$ 

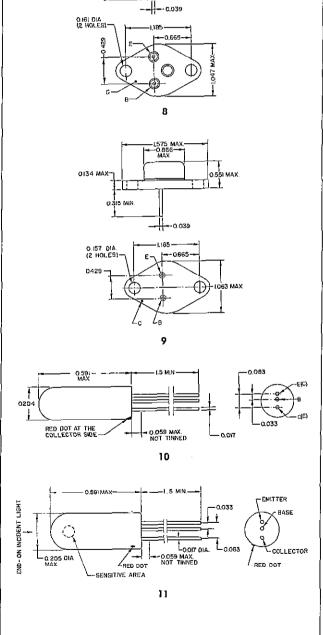
#### **PHOTOTRANSISTORS**

|        | Maximum ratings           |             |                              |                                 |                                         | Characteristics at 25°C |                                                |                          |  |
|--------|---------------------------|-------------|------------------------------|---------------------------------|-----------------------------------------|-------------------------|------------------------------------------------|--------------------------|--|
|        | Collector-emitter voltage |             | Peak                         | Max. Continuous                 | Collector                               |                         |                                                | ,                        |  |
| Туре   | Peak<br>(Y)               | D.C.<br>(Y) | Collector<br>Current<br>(mA) | junction<br>temperature<br>(°C) | dissipation<br>at 25° C amb.<br>Pc (mW) | Dark<br>Current<br>(µA) | At                                             | Light<br>Current<br>(µA) |  |
| OCP 70 | 7.5                       | 7.5         | 20                           | 65                              | 25                                      | - 325                   | I <sub>B</sub> = 0<br>V <sub>CE</sub> = -4.5 V | 750                      |  |

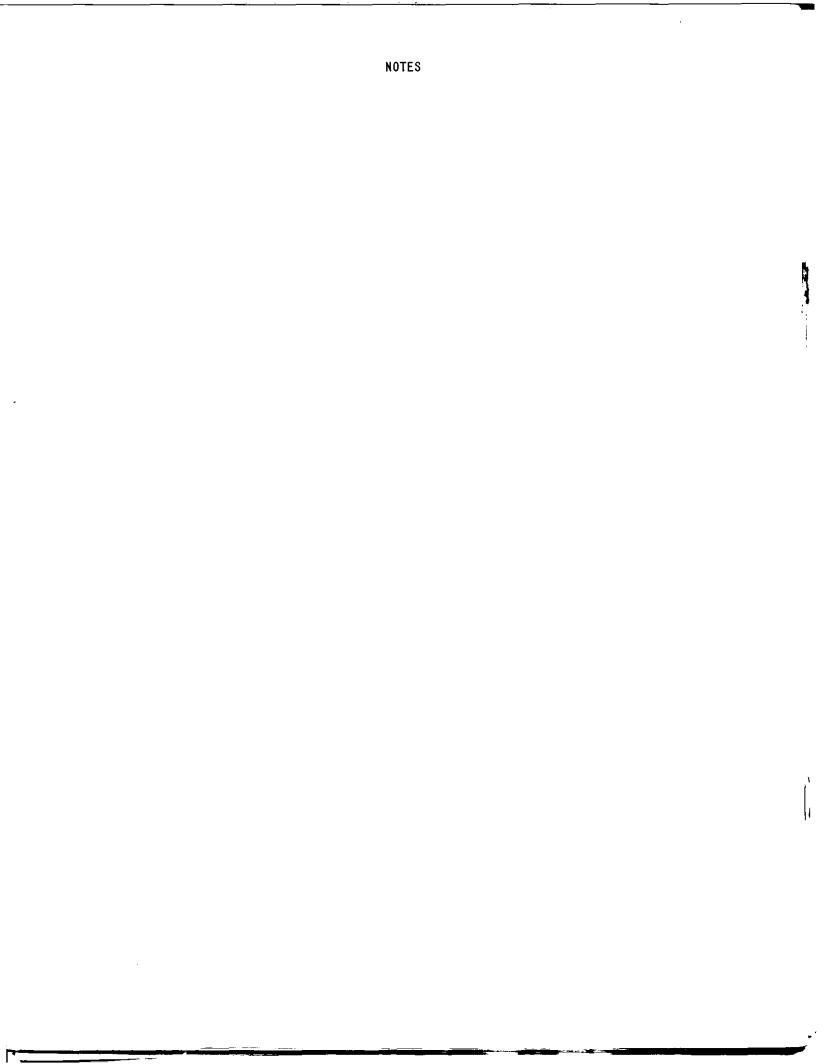
| haracteristics at 25  | °C                                 | 1                                            |                                                                  |  |  |
|-----------------------|------------------------------------|----------------------------------------------|------------------------------------------------------------------|--|--|
|                       | at                                 |                                              | 1                                                                |  |  |
| -V <sub>CB</sub>      | I E                                | Outline<br>drawing                           | Typical                                                          |  |  |
| (Y)                   | (m A)                              | No.                                          | application                                                      |  |  |
| (PNP, Ge T            | ypes)                              |                                              |                                                                  |  |  |
| 2                     | 400                                | 9                                            | Digital Computers, High                                          |  |  |
| 2                     | 400                                | 9                                            | Quality Audio Amplifiers<br>Puise Generator For<br>Ferrite Store |  |  |
| 2                     | 400                                | 9                                            | Medium Frequency Trans-<br>mitter Carrier Telephony              |  |  |
| 5                     | 3                                  | 2                                            | Medium Current                                                   |  |  |
| 5                     | 3                                  | 2                                            | Medium Current                                                   |  |  |
| (PNP, Ge Ty           |                                    | <u>.                                    </u> | i Medidin Gurrent                                                |  |  |
|                       | ·                                  |                                              | - <u></u>                                                        |  |  |
| 6                     | 300                                | 8                                            | High Voltage and High<br>Current Applications,<br>DC-Converters  |  |  |
| 6                     | 300                                | 8                                            | High Current Applications                                        |  |  |
| 6                     | 300                                | 8                                            | High Current Applications<br>DC-Converters                       |  |  |
| 6                     | 300                                | 8                                            | High Voltage And High<br>Current Applications                    |  |  |
| 6                     | 50                                 | 1                                            | Pulse Oscillators, DC-<br>Converters                             |  |  |
| 6                     | 10                                 | 1                                            | Pulse Oscillators, DC-<br>Converters                             |  |  |
| 6                     | 10                                 | 1                                            | Pulse Oscillators, DC-<br>Converters                             |  |  |
| (NPN <sup>13</sup> Ge | -Types)                            | •                                            | ······                                                           |  |  |
| 5                     | 3                                  | 10                                           | Computers                                                        |  |  |
|                       | 3                                  | 10                                           | Computers                                                        |  |  |
|                       | 3                                  | 10                                           |                                                                  |  |  |
|                       |                                    | ļ10                                          | Computers                                                        |  |  |
| (PNP, Si-Typ          |                                    |                                              |                                                                  |  |  |
| 6                     | 1                                  | 1                                            | General Purpose Audio<br>Amplifier                               |  |  |
| 6                     | 1                                  | 1                                            | General Purpose Audio<br>Amplifier                               |  |  |
| 7 -V <sub>C</sub>     | $E^{>32}$ V at $-I_C = 6$          | A and $V_{BE} = 2V$                          | /                                                                |  |  |
|                       | $E^{60 V \text{ at } -I}C = 0.$    |                                              | 2 V                                                              |  |  |
| -V_                   | $E^{80 V \text{ at } -I}C \leq 3r$ | $nA and V_{-} = 1$                           | v                                                                |  |  |
|                       | e-to-ground impeda                 |                                              |                                                                  |  |  |
|                       | -to-ground impeda                  |                                              |                                                                  |  |  |
| 10 With               | cooling fin 56200 a                | and heat sink of                             | at least 0.5 sq. in.                                             |  |  |
| 11 Bi-d               | irectional Ge-NPN                  | Transistor                                   |                                                                  |  |  |
| 12 Also               | available in match                 | ed pairs                                     |                                                                  |  |  |
|                       | voitages andcurren                 | IS OF NPN types                              | have the inverse polarity.                                       |  |  |
| 13 The                |                                    | -                                            |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |
| 13 The                |                                    |                                              |                                                                  |  |  |

.

•


.

•


•• <del>-</del> •

-1.555 MAX -0.799--

0.409 MAX



| As                                                                                                                                 | Peak Spectral<br>Response<br>(µ) | Outline<br>drawing<br>মত | Typical<br>application         |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------|
| V <sub>CE</sub> = -2V<br>Illumination = 75 ft. candles; color temp<br>of source = 2700° K; angle of incidence<br>= see outline 11. | 1.55                             | 11                       | All glass photo-<br>transistor |



Represented By CLARK R. GIBB CO. 2400 Hennepin Avenue MINNEAPOLIS 5, MINI. 200TA Telephone FRanklin 7-1200

KENNETH W. JOHNSON INDUSTRIAL DEPARTMENT

### THE AMPEREX PLANT AT HICKSVILLE, L. I., NEW YORK



In line with the growth, complexity and new applications of electronics, The AMPEREX ELECTRONIC CORP. research laboratories are continuously improving existing tubes and developing new types.

Facilities for research and study of glass technology, metallurgy, chemistry, physics of gases, radiation detection, high voltage phenomena, etc. are utilized for the purpose of incorporating these tube improvements.

A modern, well-equipped Application Engineering Department is also available for the assistance of our customers who are concerned with circuit and application problems relating to tubes.

The latest production techniques and "know-how" are applied to the manufacture of AMPEREX tubes which, for over 30 years, have achieved a reputation for reliability of performance and long life.

> Cable Address-"AMPRONICS, NEW YORK" Phone-WElls 1-6200 TWX-HICKSVILLE, N. Y. 2199