ALTEC SERVICE COMPANY

Many Ancient Transformers, A Few Amplifiers, Alignment Of Built-In Equalization, 1936. 1945. 1948. And More

SCANNED BY PATRICK JANKOWIAK KD5OEI

COLOR CODE: ALTEC WESTERN ELECTRIC RESTRICTED WESTERN ELECTRIC

In order of appearance...

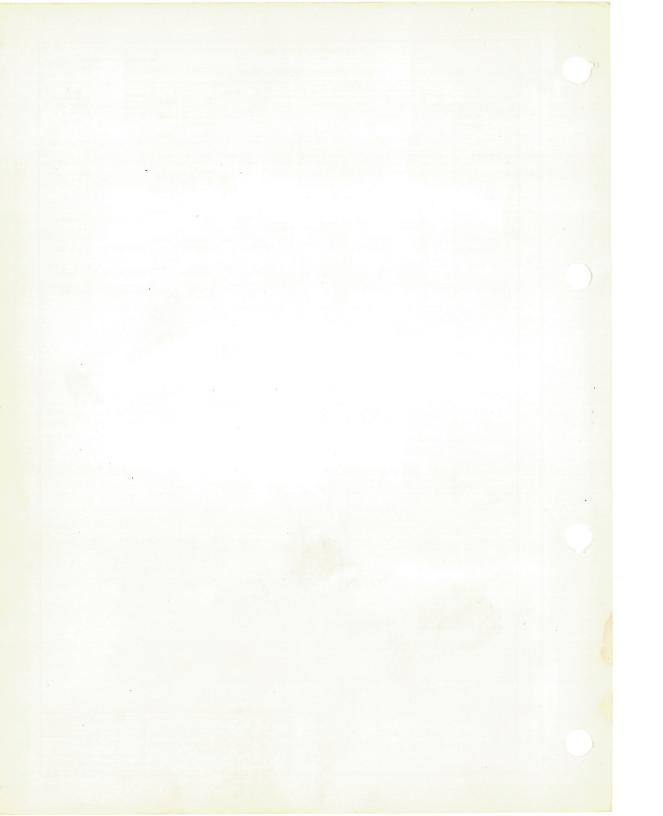
	DOCUMENT DESIGNATION
ALTEC LANSING OUTPUT TRANSFORMER CHART 3753	50.48
ALTEC LANSING AND WESTERN ELECTRIC SPEECH TRANSFORMER CHART 3756	50.48
EQUALIZING NETWORKS AND CURVES	40.64
ALTEC LANSING MATCHING TRANSFORMER CHART 3754	50.48
ALTEC LANSING POWER TRANSFORMER CHART 3757	50.48
ALTEC LANSING CHOKE COIL CHART 3755	50.48
WESTERN ELECTRIC POWER TRANSFORMER CHART 1936 RESTRICTED	4.48
WESTERN ELECTRIC OUTPUT TRANSFORMERS AND REPEATING COILS CHART 1936 RESTRICTED	4.48
WESTERN ELECTRIC INPUT TRANSFORMERS CHART 1936 RESTRICTED	4.48
ALTEC LANSING POWER AMPLIFIER A-126	50.03
ALTEC LANSING POWER AMPLIFIER EQUALIZING A-126	50.03
ALTEC LANSING POWER AMPLIFIER SCHEMATIC AND EQUALIZER A-126/A/B DRAWING 3885	50.03
ALTEC LANSING POWER AMPLIFIER SCHEMATIC A-126 FOR LOWE'S EMERGENCY SYSTEM MODDED PER AS-1734 AX-1634	50.38
ALTEC LANSING POWER AMPLIFIER SCHEMATIC A-126 FOR LOWE'S EMERGENCY SYSTEM MODDED PER AS-1734 WITH A-442 PREAMP MODIFIED PER AQ-1686 AX-1635	50.38
EQUALIZER CHARACTERISTICS (PARTIAL) A-126 AMPLIFIER WITH SIMPLIFIED EQUALIZER DWG AQ-1936	50.03
WESTERN ELECTRIC 91 AMPLIFIER CHARACTERISTICS DWG AQ-8337-A	4.64
WESTERN ELECTRIC 91 AMPLIFIER CHARACTERISTICS DWG AQ-8337-B	4.64
AND FOLLOWS MORE EQUALIZATION CURVES	
TWO-TERMINAL R-C EQUALIZER DESIGN	4.64
THE DESIGN OF ATTENUATOR NETWORK	4.64

							Al	TEC SEP	RVICE	CORPOR	TION					
								ALTER	LANSIN	G TRANSFO	RILERS - OUTP	UT			OUTPUT TR	NSFORMERS, GENERA
-	-				INPED	UNCES			1			-	TOTAL			
TY		PPLICATION	OHMS	INPUT CONNECT TO	STRAP	OHMS	OUTPUT CONNECT TO	STRAP	FREQ- UENCY RANGE	RESPONSE	MAX.LEVEL REF. 6 mm.	SHIELD- ING	TOTAL MAX.D.C. PLATE CURRENT	MAX.D.C. UNBALANCE	OVERALL DIMENSIONS AS MOUNTED (INCHES)	MOUNTING DIMENSIONS (INCHES)
TBB		PP LOW LEVEL		1-4	2-3	500 250 125 62.5	5-10 6-9 5-10 6-9	7-8 7-8 5-8,7-10 6-8,7-9	100 - 5000	1 08	+ 20 DB 0.6 WATTS	NONE	FEED		2¼X 238 X 278 н	17 × 17
TH-1	222 171A)	LEVEL	3000	BL WH -	BRN	9 3,6	RD BL RD - RD W	н	6000	1 08	+ 31.2 DB 8 WATTS	NONE	60 M A	SINGLE	258×358×315 H	2 x 3 1/4
TJ-I	524	OUTPUT OR INTERSTAGE PP HIGH LEVEL WITH TERTIARY	9500 2375	1-4 1-4	2-3	3000 2000 750 500	5-10 5-10 5-10 5-10 11-12	7-8 6-9 5-8,7-10 5-9,6-10 TERTIARY)	20 - 20 000	108	+ 39 DB 47.7 WATTS	NONE	200 M A	IO M A	4 x 4 % x 5 1/4 H	3 1/2 X 4
TJ-2			9500	1-4	2-3	10 20	7-6 7-5		20 - 20000	108	+ 39 DB 47.7 WATTS	NONE	130 M A	7 M A	4 X 4 % X 5 1/4 H	3 1/2 × 4
TL-2	03 A	PP MEDIUM LEVEL	6600 1650	1-4	1-3,2-4	500 12 6	5-8 5-7 5-6		40 -	108	+ 34 DB 15 WATTS	NONE	130 M A	7 M A	з 1/2х з 3/8х 4 /8 н	2 3/8 × 2 3/8
TL-2 (TL-2	04 (04A)	PP MEDIUM	6600	1-3	C. T. 2	6 12	4 - 5 4 - 6		40-	108	+ 35 D B 19 WATTS	NONE	A M 001	IO MA	3 1/2 х 35/8 х 4 1/8 н	278×278
TL-2		PP MEDIUM LEVEL WITH TERTIARY	6600 1650	1 - 4 1 - 4	2-3	500 220 125 56 14 20	5-10 6-9 5-10 6-9 5-10	7 - 8 7 - 8 5 - 8,7 - 10 6 - 8,7 - 9 5 - 9,6 - 10 (TERTIARY)	20 - 20000	IDB	+ 35 DB 19 WATTS	NONE	130 MA	7 MA (6600 A) 14 MA (1650 A)	3 ½ x 3 ⁵ 8 x4 ¹ 8 н	2 38 × 2 38
TL-2 *	178	PP MEDIUM	6600	BR - BL	C.T. RD.	10 20	BLK-YE	L	20-	108	+ 35 DB	NONE	130 M A	7 M A	3 1/2 × 35 × 4 /4 H	2 1/2 × 2 1/8
TL-2	18	PP MEDIUM LEVEL WITH TERTIARY	80 00 2000	1-4 1-4	2-3 1-3,2-4	500 250 125 62.5 20	5-10 6-9 5-10 6-9	7 -8 7 -8 5-8,7-10 5-8,7-9 TERTIARY)	20-20000	1 DB	+ 32 D8 9.5 WATTS	NONE	50 M A	5 M A (8000 -) 10 M A (2000 -)	з ½ x з 3 x 4 1 н	2 % x 2 %
TL-2		OUTPUT OR INTERSTAGE PP MEDIUM LEVEL WITH TERTIARY	6600 1650	1-4	2-3 1-3,2-4		5-10 6-9 5-10 6-9	7-8 7-8 5-8,7-10 6-8,7-9 TERDARY)	20 - 20000	IDB	+ 35 DB 19 WATTS	NONE	130 M A	7 MA (6600 A) 14 MA (1650 A)	з ½ х з ⁹ 8 х 4 ¹ 8 н	27/8×27/8
TL-		PP LOW LEVEL	10 000.	1-4 1-4	2 -3	7	5 -6		7- 1000	I DB	* 22 DB	30 08	10 MA	5 M A	3 1/2 × 3 3/8 × 4 1/8 H	2 % x 2 %
TLB- (WE-	208	PP MEDIUM LEVEL	4000	3-6	4-5	6 12	1-17		40 - 8,000	IDS	+ SO DB 6 WATTS	NONE	120 MA	10 MA	3 % × 2 % × 4 34 +	24 × 13
TM-	208	PP HIGH LEVEL (87E TO 87W CONVERSION)	6700 1675	1-4 1-4	2-3 1-3,2-4	500 250 125 62.5		8 - 10 8 - 10 5 - 10 , 8 - 11 7 - 10 , 8 - 9	40 - 8000 BELOW 40 DB 100 - 8000 40 0B - 46 DB	0.5DB	+ 46 DB 240 WATTS	NONE	400 M A	40 MA	5 3 × 6 × 6 4 +	
TM-	219B	PP HIGH LEVEL	82.00 2050	1-4 1-2	2-3 1-3,2-4	20 9 5 2.23	5-10 6-9 5-10 5-9	7 - 6 7 - 8 5 - 8,7 - 10 6 - 8,7 - 9	60-	IDB	+ 46.2 DB 250 WATTS	NONE	400 M A	40 MA	5 X 7 5 X 6 1/2 H	5 ¼ × 5 3/8
TM-	220A	PP HIGH LEVEL	4000	1-4	2 - 3	16 8 4 2	5 - 10 6 - 9 5 - 10 6 - 9	7-9 7-8 5-6,7-6 6-8,7-9	20 -	I DB	+ 42.2 DB 100 WATTS	NONE	300 MA	15 N.A	5% × 6 × 6 H	558 × 3 14
TMB		PP LOW	6600	1-3	C.T. 2	15	4 - 5	6-8,7-9	BOO (ONLY)		+ 23 08 1.2 WATTS	NONE				
THL	-200	PP MEDIUM LEVEL	9000	1-3	C.T. 2	600 550 500	4 - 7 4 - 6 4 - 5		400 (ONLY)		+36.2 DB 25 WATTS	NONE				
THE	-221	PP MEDIUM	6600	PL-PI	с.т. в+	2700	6-6	C.T. C -	20 20000	I DB	+35 DB 19 WATTS	NONE	140 M A	7 M A	41/8 × 3 3/4 × 4 1/2 1	1 5 % × 3 ½
TP -	20 2	PP LOW LEVEL	20,000 3,125	1-4	2-3 1-3,2-4	500 250 125 62.5		7 - 8 7 - 8 5 - 8,7 - 10 6 - 8,7 - 9	20 - 20 000	IDB	+15 DB 0.19 WATTS	60 D B	PARA LLE FEED		2 to x 2 1/2 X 3 1/2 1	1 2 1/2 × 2
TP	-204	PP LOW LEVEL	12,500	1-4	2 - 3 1 - 3,2 - 4	500 250 125 62.5	5-14 6-13 5-14 6-13	7-12 7-12 5-12,7-14 6-12,7-13	20 - 20000	1 0 8	+ 15 DB 0.19 WATTS	60 DB	FEED		2 7 × 2 1/2 × 3 1/2	2 1/2 × 2
TP-	211	PP MEDIUM LEVEL WITH TERTIARY	3500	BL - BI	RN C.T. RD	10	RD.WH	GRN	20-	2 08	+ 30 DB 6 WATTS	NONE	50 M A	5 MA	278×22×32 н	2 12 × 2
TL-1	217.A	PP MEDIUM	6600	1-3	C.T. 2	10 20	6-5 6-4		20-20,000	1 0 8	+ 35 DB 19 WATTS	NONE	130 MA	7 M.A	3 1 × 3 5 × 4 1 H	2 ⁷ / ₈ × 2 ⁷ / ₈
	212	SINGLE 6L6 WITH CATHODE TERTIARY	5200	1-4	2-3	6	5-8		50- 8,000	IDB	27 DB 3 WATTS	NONE	65 MA	65 MA	21/2 × 27/8× 31/2H	

0 48														
PEECH TR	RANSFORMERS, GENER	RAL		AL	TEC SE	RVICE	CORPORA	ATION						
			5		ALTER	LANSING	VRAMS) OR ST	RS - SPEECH			· · · · ·			
TYPE	APPLICATION	BALANCED TO GROUND		INPUT		SEAMORS	OUTPUT		FREQ.	RESPONSI	MAX.	SHIELDING	OVERALL DIMENSIONS	MOUNTING
TB-101	INPUT LINE TO SINGLE ON PP GRIDS.	SECONDARY	509 125	1-4	2 - 3 1-3,2-		CONNECT TO 5-8 5-8	STRAP	RANGE	108	REF. 6MW.	25 08	AS NOUNTED. (INCHES)	(INCHES)
8-102	INPUT - LINE TO SINGLE ON PP GRIDS.	SECONDARY	250 125 62.5 31	1.6	3-4	70,000	5-8 7-10 7-10	6-7 5-7,6-8 8-9 7-9,8-10		108	- 20 08	MAGNETIC B	134 x 158 DIA	1 1/2
103	INPUT - LINE TO SINGLE ON PP CRIDS	SECONDARY		2-5 1-6 2-5	2-4,3-	70,000	5-8 5-8	6-7 5-7,6-8	20	1.08	20 DB	ELECTROSTATIC	13 . 5	11/2
8 - 131	WTERSTAGE OR BRIDGING SINGLE OR PP PLATES TO SINGLE OR PP GROS	PRIMARY O		1-4	2-3		7+10 7-10	8-9 7-9,8-10		1 08	-20 08		13 × 1 % DIA.	1 12
BA - 10 5 E A233E)	WPOT - LINE TO GRID	NO	200 50	1-6 1-6	2-6,1-5	25,000 6,250	3-8	4 - 7 3 -7, 4 - 8	60	0.508	+12 DB	MAGNETIC & ELECTROSTATIC 30 D B	3 4 × 2 4 × 5 9 H	
84- 106 E-4247A)	INPUT - LINE TO GRID	NO	2 50	1-4	2 - 3	159,000	5-6		60- 8000	0.5 08	+4.8D8	30 0 8		2 % x 2 3 8
A-201 A E-A170A]	INPUT-PEC TO LINE	NO	357000	e t- B t	. WH	25	RD · RD, WH	1	8 000 100 - 6 000	1 08	0.08	25 08	2 4 × 2 4 × 3 4 н 1 15 × 1 % DIA.	2 3/6 × 2 3/8
8 - 101	SINGLE OR PP GRIDS	SECONDARY ONLY	500 125	1-4	2 - 3 1-5,2 - 4	70000	7-10 7-10	8-9 7-9,8-10	20 20 000	108	- 20 DB	90 DB MAGNETIC B ELECTROSTATIC	2 4 × 2 3 × 2 7 H	1 76 × 1 76
BB-102	INPUT - LINE TO SINGLE OR PP GRIDS	SECONDARY ONLY	250 125 62.5 31	1-6 2-5 1-6 2-5	3~4 3-4 1-4,3-6 2-4,3-5	70,000	7-10 7-10	8-9 7-9-10	20 - 20000	108	-20 08	90 DB MAGNETIC B ELECTROSTATIC	2 4 × 2 3 × 2 7 H	13 13 13 16
88 - 10 3	INPUT LINE TO SINGLE OR PP SRIDS	SECONDARY	500 250 30	1-3 1-2 2-3	£ 4, 5-5	70,000	7-10 7-10	8 - 9 7-9,6 - Ю	20- 20,000	108	-20.08	90 D8 MAGNETIC & ELECTROSTATIC	2 4 х 2 3 х 2 7 н	176×176
8 - 115	INPUT LINE TO SINGLE OR PP GRIDS	SECONDARY	20 5	1-4	2-3	70000	7-10 7-10	8-9 7-9,8-10	20 - 20,000	108	2006	90 DB MAGNETIC &	24 х 23 х 24 н	17. X 1 7.
8 - 151	INTERSTAGE OR BRIDGING SINGLE OR PP PLATES TO SINGLE OR PP GRIDS	PRIMARY & SECONDARY	2500	1 - 4	2 - 8 1 - 3,2 - 4	40000	7 10 710	8-9 7-9,8-10	20 - 20000	108	- 20 DB	ELECTROSTATIC 90 DB MAGNETIC B ELECTROSTATIC	2 4 × 2 3 × 2 7 H	1 7 × 1 2 1 16 × 1 16
0-104 -2618 1	INPUT- LINE TO GRID	PRIMARY ONLY	200	1- 4 1- 4	2 - 3 -3,2-4	110,000	5 - 6		20-	1.508		90 DB MAGNETIC & ELECTROSTATIC		
- 152 - A	INTERSTAGE OF OUTPUT PP WITH TERTIARY	PRIMARY B SECONDARY	9500 2375	-4 -4	2-3	3000 2000 750 500	5-10 5-10 5-10 5-10	7 - 8 6 - 9 5 - 8 7 - 10 5 - 9, 5 - 10	20 20 000	108	+3908	ELECTROSTATIC NONE	2 % х 2 % х 5 % н 4 х 4 % х 5 % н	2 8 × 2 8 3 5 × 4
101 8	INPUT - A 287 F AMPL.	YES	500 220 125 56 14	1 - 8 2 - 3 1 - 6 2 - 6	3-4 3-4 1-4,3-6 2-4,3-5 1-5 2-6	30000	5-10	89	20 - 20 - 20 000	1 D 8	+ 34 D B	NONE	3 2 × 3 5 × 4 5 н	2 4 × 2 4
-151 A -264C)	NTERSTAGE - SINGLE PLATE TO PP GRIDS	PRIMARY & SECONDARY	20000	1-2	1-5.2-6	100000	3-6	4-5	40 -	108	200 V PEAK ACROSS 3-6	30 DB HUM BUCKING.	2 ¹³ х2 ¹³ х 3 ј н	2 3 × 2 3
B-156	SPECIAL SERVICE DUAL WINDINGS	NO	50,000	1-5.01	16-7	1,800,000	3-5 OR	0-10	20 -		3-6 2.5 V ACROSS PRIMARY	NONE	10 10 2	8 6
-105	LOW LEVEL	NO	5000	RD, WH- RD			GRN-BLK		20-		O DB	NONE	15 DIA X 134 H	1 1/2
											1		• •	-

4	ALTEC SERVICE CORPORATION SIMPLEX SOUND EQUIPMENT BULLETIN	4 TESTING PROCEDURES GEN
REDRAWN FROM ISSUE? WITH FOLLOWING CHANGES: WOTE 3 MAS NOTE 5: MOTE 3 MAS NOTE 5: MAPPED TO MARLIPER ADDED TO THE, SWURD SOUND SYSTEMS RE- MODED TO MARLIPER ADDED IN MOTE 1: MAPPED TO ALLE BAND MAPPED TO ALLE BAND MAPPED TO ALLE BAND MAPPED TO ALLE BAND MAPPED TO ALGED TO ALGE ADDED TO ALGED TO ALGED RESERVERT. CHANGE ADDED TO ALGED TO ALGED ADDED TO ALGED TO ALGED ADDET TO ALGED		MATIC Control Control
		ины се ек ин-те. с ² в.к. Перета (1996) Перета (1996) Перета (1996) 1996 - 100 1996 - 100 1
SUCC SOCCC SOCC SOCC SOCC SOCC SOCC SOCCCC SOCCC SOCCC SOCCC SOCCC SOCCCC SOCCCC SOCCCC SOCCCCC SOCCCC SOCCCCCC SOCCCCCCCC SOCCCCCCCCC SOCCCCCCCCCC		LUC CLUME 1000 2000 2000 2000 2000 2000 2000 200
S = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		0 0 0 0 0 0
ELD WARFING CIRCUIT (SEE NOTE 2) WIRING DIAGRAM WIRING DIAGRAM WIR		
(LIMITS ± LDB) ARE OBTAINED BY AL WARPING CIRCUIT IN THE AM-IDDI AME WO-113). CURVES LI TO L-4 AND A OTHER CURVES ARE FOR USE ONLY W CONDITIONS ARE ENCOUNTERED. AND ASSOCIATED WITH ANY HIGH END CUR Printed in U.S.A.	JUSTMENT OF THE USING ED-35 TEST FILM, 6 FEET OF SH-2100 COAXIAL WARPING CÁRCUIT STRAPPING REQUIRED TO ÓBTAIN THE LIFER (SEE DRAWING CARLE (CAPACITY 3 MMF PER FOOT), AM-101 TYPE VOLUME CURVE. RECONNECT STRAPS, AS NECESSARY, AND REMOVI CURVE. RECONNECT STRAPS, AS NECESSARY, AND REMOVI OTHER EXISTING STRAPS NOT SHOWN IN THE FIGURE. THE PHONE CABLE, CAPACITY 26 MMF PER FOOT, (20 FEET OTHER EXISTING STRAPS NOT SHOWN IN THE FIGURE. THE PHONE CABLE, CAPACITY 26 MMF PER FOOT, (20 FEET OW END CURVE MAY BE EM-633 PLASTIC MICROPHONE CABLE OPTIONAL). THE WH-RD CABLE OPTIONAL).	e

2	4 24					SERVICE CORPO SIMPLEX QUIPMENT BUL					TES	40. TING PROCEDURES GENER
REDRAWN FROM ISSU WITH FLIQUING CHMM WITH FLIQUING CHMM NOTE 3 WAL ADDE NOTE 3 WAL ADDE NOTE 3 WAL NOTE 1. ADDED INTLE, SWA WH- ADDED IN MIT 3 ' ID ADDED IN MIT 3 ' ID ADDED TO ALL BL, B BR AND RD - 66 WMR RESPECTIVELY CURR RESPECTIVELY CURR RES	1850E:3 7-22-										•	
HIGH END WARPING CIRCUIT (SEE NOTE 2) WIRING DIAGRAM WIRING DIAGRAM WILLE DIAGRAM WILLE DIAGRAM WILLE DIAGRAM WILLE DIAGRAM WILLE DIAGRAM WILLE DIAGRAM WILLE DIAGRAM WILLE DIAGRAM	wiret '9 et	भभः सः स्वार, <u>, , , , , , , , , , , , , , , , , , </u>	Land the second				भाग-वा ज्वन-्रमान्त्रम् स्ट्रिस् ज्विश्विधिश्च शिशिष्ठिति विश्विधिश्चित्र स्टर्भ्य स्ट्रिस् ज्विश्विधिश्च शिशिष्ठिति विश्वित्र स्टर्भ्य स्टर्भ्य स्ट्रि			भग-छा थ्र ९२ मगर-४६ थ्र छ। १७-१९ वि		DB 2 COHEMAL 1 END 2 COHEMAL 2 END 2 COHEMAL 2 END 2 COHEMAL 2 END 2 COHEMAL 2 END 2 COHEMAL 2 COH
S 500 G 400 ₹ 300						20 20 20 20 20 20 20 20 20 20					 	CV 0
					WH-YEL 3X <u>SEAL</u> K	ин-ует. 8 8	WYYEL KWYEL SER		WM-YEL S 25 BLK	WH-YEL &	20. 150 100 100 100 100 100 100 100 100 100	П на по
LOW END WARPING CIRCUIT NIAINE DIJARANA WARPING DIJARANANA WARPING DIJARANANANANANA WARPING DIJARANANANANANANANANANANANANANANANANANANA						With an analysis and a second	ALL					
		HC T	H C C C C C C C C C C C C C C C C C C C	Here H								
Printed in U.S.A.	(LIMITS ± 1DB) ARE WARPING CIRCUIT IN WD-113). CURVES OTHER CURVES ARE CONDITIONS ARE EN	ESPONSE CHARACTERIST THE AM-IODI AMPLIFI VITHE AM-IODI AMPLIFI L-I TO L-4 AND H-I T FOR USE ONLY WHEN NCOUNTERED. ANY LOW ANY HIGH END CURVE.	STMENT OF THE HER (SEE DRAWING TO H-4 ARE STANDA UNUSUAL ACOUSTIC END CURVE MAY E	USING CABLE ARD. CONTR C PHONE	URVES INCLUDE SCAN ED-35 TEST FILM, CAPACITY & MMF H ROL AMPLIFIER AND E CABLE, CAPACITY	NOTES — WHING LOSS, AND WERE O 6 FEET OF SH-2100 COAL PEF FOOT, AM-101 TYP 15 FEET BELDEN & 8401 N 26 MMF PER FOOT, (20 F PHONE CABLE OPTIONAL	IXIAL PE VOLUME MICRO- FEET L.).	THE FIGURE, ASSOC WARPING CIRCUIT S CURVE. RECONNECT OTHER EXISTING STI WH-BL 22 BL AND THE WH-RD-GR 20 REMAIN CONNECTED AS SHOWN ON DRAW THE AMPLIFIER IS S	STRAPPING REQUIREL STRAPS, AS NECES RAPS NOT SHOWN IN WH-YEL OR BLK WII RD-GR WIRE FRO TO RI9, CI4 AND R	0 TO OBTAIN THE SARY, AND REMOVE THE FIGURE. THE PES FROM TI AND M TSI SHOULD 16 RESPECTIVELY	Ε.	AM - 1001 AMPLIFIE FREQUENCY RESPONS CHARACTERISTICS INTERNATIONAL PROJECTO 5 OCTAVIENTO BOOMRED NEW BEI DOWNED OT CET A DATO OT CAT OF CET A DATO


					ALT	EC SER	VICE CO	RPORATIO	N			м	ATCHING TRANSFORM	5
					:	ALTEC LAN	SING TRA	SFORMERS -	MATCHIN	2				
			-		IMPE	DANCES					1			
TYPE	APPLICATION	BALANCED TO GROUND	OHMS	INPUT CONNECT TO	STRAP	OHMS	OUTPUT CONNECT TO	STRAP	FREQ- UENCY RANGE	RESPONSE	MAX. LEVEL REF. 6 may.	SHISLD-	OVERALL DIMENSIONS AS MOUNTED (INCHES)	MOUNTIN DIMENSIO (INCHES
TJ-403A	HIGH LEVEL AUTO - TRANSFORMER	NO		(H - 88 (H - 80					40-	108	+ 42.2 DB	NONE	4 x 4 8 x 5 4 H	3 1/2 × 4
TL-254C	MEDIUM	ND	1000 500 250	1-4 1-3 1-2		12 6	5 - 7 5 - 6		20 2 0000	IDB	+ 35 DB 19 WATTS	NONE	31/2 х 3 🖁 х 4 1/8 н	2 × 2
TL-262	MEDIUM LEVEL	NO	250 500	1-2		10 20	5-6 5-7		20 20000	108	+ 35 DB 19 WATTS	NONE	3½×3 ⁵ 8×4 ½ н	2 7 × 2
TP - 255 A	HYBRID 3 WINDING MATCHING LOW LEVEL	YES ALL WINDINGS "	500 500 1000 250	1 - 2 3 - 4	2 - 3 2 - 3 2 - 3 1-3,2 - 4	500 500 12 5	5 - 14 5 - 14 5 - 14	7-12 7-12 5-12,7-14	20 - 10000 20 20000	108 208	+15 DB 0.2 WATTS	30 DB	2 ² 6 х 2 ¹ 2 х 3 ¹ 2 н	2 ½ × 2 2 × 2
TP-256	LOW LEVEL	YES	500/600 250/300 125/150 62.5/75	1-6 2-5 1-6 2-5	1-4,3-6	500/60 250/50 125/15 62.5/7	0 8-11	9-10 9-10 7-10,9-12 8-10,9-11	20,000	108	+ 15 DB 0.2 WATTS	4008	2 28 х 2 2 х 3 2 н	2 ½ × 2
TP-404	MEDIUM LEVEL	NO	2.5 5 12	WH - Н WH - R	D				50 8000	IDB	+ 35.2 DB 20 WATTS	NONE	2 x z z x 3 z H	2 ½ × 3
TP - 258	LOW LEVEL	YES	500/600 250/300 125/150 62.5/75	i -6 2-5 1-6 2-5	3-4 3-4 1-4,3-6 2-4,3-5	500/600 250/30 125/150 62.5/7	0 8-11	9 - 10 9 - 10 7-10,9-12 8-10,9-11	20 - 20,000	108	+ 15 D B 0.19 WATTS	60 08	2 ⁷ 8х2 ¹ 2х 3 ¹ 2 н	2 ½ X 2
TP-261	MEDIUM LEVEL	NO	500	1-2		1.0 0.5 0.25	3-7 4-7 3-7	5-6 5-6 3-6,5-7	60- 8,000	1 08	32 DB IO WATTS	NONE	2½ × 2½ × 3½ н	2 x 21/2

NOTE: I, TJ-403A AUTO-TRANSFORMERS ARE RECOMMENDED FOR USE AS FOLLOWS -Voice of the theatre speaker systems with simplex G60 Sound systems or equivalent.

-

PRINTED IN U.S.A.

ISSUE	APPRO	DATE	CHANGE	DH BY ENC.	APPHOTY
12	Kur.	7/2/			G CORPORATION
2 A	the :	1-6.20	REVISED TO INCLUDE CURRENT ITEMS	MATCH	NIC
28	12		TP-258 ADDED. NOTE CORRECTED. TP-261 ADDED.		
	1			TRANSFO	DRMERS
Called .				3754	1

r		
ALTEC	SERVICE	CORPOR

.

				<u>1</u>	ALTEC LANSING POLIS	TRANSFORMERS			
TYPE	FREQUENCY	PRIN	ARY	TERMINALS	SECONDARY S VOLTS	AMP5.	ELECTROSTATIC SHIELD	OVERALL DIMENSIONS AS MOUNTED (INCHES)	MOUNTING DIMENSIONS (INCHES)
TJ-604 B	50-60	1-2 1-3 1-4	105 117 130	5-6-7 8-9-10 11-12	350-0-350 6.3 CT. 5.0	0.125 DC 5.0 3.0	YES	4×4% × 5 ¼ н	3 1/2 X 4
TJ-618 D	50-60	1-2 1-3 1-4	105 117 130	10-12-14 11-12-13 5-6-7 8-9	605-0-605 565-0-565 6.3 CT. 5.0	0.150 DC 0.150 DC 3.5 3.0	NO	4 x 458 x 5 ¼ н	3 1/2 × 4
TJ-619 C	50-60	1-2 1-3 1-4	105 117 130	5 - 6 - 7 8 - 9 - 10 11 - 12 13 - 14 15 - 16	545-0-545 6.3 CT. 5.0 6.3 6.3	0.200 DC 3.0 3.0 3.0 0.7	NO	4х 4 ⁵ 8х 5 ¼ н	3 1/2 × 4
TJB-702 WE-A 3598)	50-60	1-2	110 120	4 - 5 7 - 8 - 9 6 - 8 - 9	5.0 70-0-70 78-0-78	5.0 1.4 1.4	NO	5 1/2 × 4 1/3 × 4 7/6 H	5 X 2 3 4
TL - 608	50 - 60	BLK - BLK	117	RD-RD.TRRD. GR. SLVG GI GR. SLVG. YEL. SLVGYE	6.3 CT.	0-125 DC 2.4 3.0	YES	з½хз% ₈ х чі _{́8} н	2 ⁷ 8x 2 ⁷ 8
TL- 706	60	1-2	-115	3-4 3-5 3-6	13.0 15.0 17.0	5.0 5.0 5.0	NO	3½х3%х4%н	2 ⁷ / ₈ × 2 ⁷ / ₈
TM -602 WE -A 303B 1	50 - 60	1-2	110	3-37-4	430-0-430	0.063 DC	NO	315 X 3 5 X 3 1/ H	2 13 x 2 78
TMJ-851 (WE-352 Y)	50 - 60	1-2 1-3 1-3A	105 117 130	4-5-6 7-8-9 10-11	10.0 CT 10.0 CT 2.5	3.0 3.0 10.0	NO	5½×3%×5H	5 x 2 3/4
TMJ - 813	60	1-2	115	3-4-5 6-7-8 9-10-11 12-13-14	440-0-440 6.3 CT 5.0 CT 6.3 CT	0.125 DC 3.0 3.0 2.0	NO	5 ½ X 3 ¾ X 5 H	B X 2 ³ /4
TMJ - 701 (UTC-18244)	50-60	1-2 1-3 1-4	107 115 122.5	5-6-7 8-9-10	4.0 CT 62.5-0-62.5	12.0 2.0 DC	NO		
TML- 557	60	1-2	11 5	3-4 5-6	6.3 6.3	6.0	YES	4% x 3 x 4 2 H	3% × 3 %
TML- 558	60	1-2	11.5	3-4-5 6-7-8	6.3 CT 6.3 CT	4.2 2.7	ND	4 % x 3 ¾ x 4 ½ H	3 % × 3 %
TMP - 550	60	1 - 2	115	3-4-5	6.3CT	4.0	NO	238×278×312H	2 × 2 1/2
TMP-551	60	1-2	115	3-4-5 6-7-8	6.3 CT 6.3 CT	3.3 0.6	NO	23 x 2 7 x 3 2 H	2 x 2 1/2
TMP - 590	60	1-2	11.5	3-4-5 6-7-8	300 CT 300 CT	0.010	NO	2 3 × 2 3 × 3 1/2 H	2 × 2 1/2
TMP-612	60	1 - 2	11.5	3-4 5-6	700 2.5	0.002 3.0	NO	238 × 278 × 3 1/2 H	2×21/2
TMS-578 C (WE-D96835)	50-60	1-2 1-3	107 117 130	5-7-9 6-7-8	1725-0-1725 1470-0-1470	0.160 DC 0.160 DC	NO	7 8 × 5 2 × 7 2 H	6 % X 4
TP - 701	50-60	1-2	110	4 - 5	20.0	0.5	NO	2 3 х 2 1/2 х 3 1/2 н	2 1/2 × 2
TR-576 A (WE-AQ 1099) WE-AR 1054A)	50-65	1 - 2 1 - 3 1 - 4	107.5 115 122.5	5-6-7	960-0-960	0.173	NO	а ½ x 4 ¾ x 6 н	73 × 3 18
TM5-579B	50 - 60	1-2	110	4 - 5 - 6	1700 - 0 - 1700	0.3	YES	5 12 × 7 38 × 7 12 H	6 7 × 4
TM-608 (WE-A359A)	50 - 60	1 - 2 1 - 3	11 0 120	4 -5 -6 7 - 8 9 - 10 - 11 12 - 13 - 14	5-0-5 5.0 492.5-0-492.5 2.5-0-2.5	1.2 2.0 0.130 2.4	NO	4 ⁵ х 5 ½ х 4 ½ н	5 X 2 34
TL-403 AUTO-TRANS-FOR USE WITH A-255 AMPL. ON 220V AC	50 - 60	0-220	220	0 - 110	110		NO	3½×3 ⁵ 8×4 1 ₈ н	27,8×278

4 .

CHOKE COILS,	GENERAL	1	LTEC SERVICE	CORPORATION		
			ALTEC LANSING C	HOKE COILS		
TYPE	APPLICATION	INDUCTANCE HENRIES	D.C. M.A.	D.C. RESISTANCE OHMS	OVERALL DIMENSIONS AS MOUNTED (INCHES)	MOUNTING DIMENSIONS (INCHES)
TA - 305 S	IO V 60 CYCLE AC	CONN. TO, 5 1 1-2 2 1-3 3 1-4 4 1-5 5 1-6	TRAP 0 0 0 0 0 0	800 TOTAL	134 x 158 DIA.	<i>b</i> 2
TA - 325	IOV 60 CYCLE AC	4	0	720	134 X 158 DIA.	1
TBB - 301	PLATE FEEDER WITH TP 202 & TP 204 TRANS.	100 1-4 2 25 1-4 1-3	- 3 5 ,2-4 10	4600 1150	2 4 х 2 8 х 2 7 н	1 3 x 1 3 6
T88 -314	FILTER	35+	40	500	2 ¹ / ₄ x 2 ³ / ₈ x 2 ⁷ / ₈ н	17/16 X 17/16
TL - 502 A	FILTER	3.5	400	55	3 1/2 × 3 5/8 × 4 1/8 н	2 ⁷ / ₈ × 2 ⁷ / ₈
TL - 517 A	FILTER	12	200	126	31/2×35/8×41/8 н	2 7 ₈ × 2 7 ₈
TL - 518	FILTER	0.02	5000	0.32	3 1/2 × 3 5/8 × 4 1/8 н	2 7/8 × 2 7/8
TM-504	FILTER	250 200 175	5 10 15	4317	з х з х з ∮ ₈ н	2 ³ / ₈ × 2 ³ / ₈
TM - 507	FILTER	8 18	400	60	4 ⁹ / ₆ х 7 ⁵ / ₈ х 6 н	3 x 7 1/4
TMJ-507 WE-240 B)	FILTER	25	160	250	4 ⁹ ₃₂ x 5½ x 4 ⁷ ₈ н	5 X 2 3/4
TP - 506 B	FILTER	9	150	170	2 78 х 2 1/2 х 3 1/2 н	2 1/2 × 2
TP-507	FILTER	3.0	120	60	2 1/8 х 2 1/2 х 3 1/2 н	2 1/2 X 2
TL8-506 A (WE-197A)	FILTER	15	150	208	5 ⁹ х 5 ³ х 4 ³ н	3 × 2 ¹⁰

	APPRO	DATE	CHANGE	DR. SY EM:	APPROVAL
2 2 4	1.1	5-12-45	TL 517 ADDED B TL 502-A		SING CORPORATION
2 B	Dry	4-1-44	REVISED TO INCLUDE CURRENT	CHO	KES
2 C 2 D			TP-507 ADDED TLB-506 ADDED		NL3
	Ata	1.2.7		37	55

PRINTED IN U.S.A.

RESTRICTED DISTRIBUTION WESTERN Electric 4.48 ERPI PERSONNEL AND R. S. LICENSEES EQUIPMENT BULLETIN TRANSFORMERS - POWER * Indicates Additions and Changes. Replaces Transformers - Power, Section of E.B. "Transformers - General", File 4.48 . . . PRIMARY SECONDARY TRANSFORMER WHERE USED FREQ. WIND INGS VOLTS WINDINGS VOLTS AMPS. REMARKS 90-B Repeating Filament & Plate 60 1-2 105-115 3-4, 5-6 5.0 1.6 4, 5 are Center Taps for Coil 25-0 & 51-1 7-8 5:0 1.6 Winding 3-6, 8 & 9 are Amplifiers 9-10 390.0 0.030 Strapped 303-A Filament & Plate 60 3-4 5-6 7-8 8-9 0.25 1-2 110 1.0 "T" is Common Center Tap for Transformer 34-A & 34-B 4.5 Windings, 3-4 & 5-6 Amplifiers 385.0 0.030 303-B Plate, 42-A, 46-A, 60 1-2 110 3-3도 3도-4 430 430 0.063 B,C,D,E & F Transformer 0.063 Amplifiers 303-0 Filament, 42-A, 60 110 1-2 3-31-4 4.5 3.2 3T & 5T are Center Taps Transformer 46-A, B, C, D, E & 5-51-6 3.2 F Amplifiers 303-D Plate, 706-A 720 1-2A-2B 3-4 90 Supplies Plate Potential for Transformer Control Cabinet 5-5T-6 2, 205-D Tubes in Full Wave Rect. 1, 205-D Tube in Half Wave Rect. "5T" is Center Tap for 5-6 303-F Filament, TA-7114 50-60 1-2 107.5 4.5 3.2 5-7 6 & 9 are Center Taps for 8-10 Transformer Panel 1-3 115.0 Windings, 5-7 & 8-10 122.5 307-1 Plate, 43-A 60 1-2 110 3-3T 3T-4 760 760 0.13 Transformer Amplifier 0.13 307-B Filament, 43-A & 60 1-2 110 3-31-4 5-51-6 10.0 6.0 3T & 5T are Center Taps Transformer B-43-A Amplifiers 10.0 6.0 308-A 5-6 5-6 5.0 16.0 Line Voltage Regulator 707-A Control 60 1-2 110 Transformer Cabinet 3-4 110 16.0 5-7 6-7 8-9 10-11 310-1 Filament & Plate, 60 1-2 105.0 450 450 0.080 Half Wave Rectifier Transformer 708-A Control 110.0 1-3 0.080 300 4.65 4.65 0.043 Cabinet 115.0 3.2 12-13 3.2 311-▲ Projection Lamp, 202-B & TA-4050 ----Replaced by 311-B Trans-Transformer former -53 Reproducer 100-125 311-B Projection Lamp, 202-B & TA-4050 60 1-2 3-4 30 30 5 Taps on Primary to Adjust Transformer for Line Voltage -53 Reproducer Sets 50-60 655 655 316-1 Plate, 57-A, 107.5 5-6 7-8 0.130 Full Wave Rectifier 1-2 Transformer. 59-A & 59-B 1-3 115.0 0.130 Amplifiers 122.5 *316-B 5-A Rectifier 50-60 1-2 107.5 5-6-7 5.0 2.0 6 & 9 are Center Taps. Full 115.0 8-9-10 720 Transformer 0.125 Wave Rectifier. 1-3 122.5 2.52 6.0 8. 11 & 14 are Center Taps 50-60 107.5 5-6 317-A Filament, 57-A 1-2 Transformer Amplifiers 1-3 115.0 2.2 3.0 for Windings, 7-9, 10-12 & 10-12 5.0 122.5 2.0 13-15 13-15 2.0

4 PAGES - PAGE 1

Electrical Research Products Inc. OPERATING DEPT. - EQUIPMENT DIV. PRINTED IN U.S.A. July 2, 1936

EQUIPMENT BULLE	tes Additions & Chang		so	UND Justo	Electric SYSTEM			*
* Indica	tes Additions & Chang	es 🏚	PRIM.	PY	SE	* CONDARY		*
TRANSFORMER	WHERE USED	FREQ.	WINDINGS		WINDINGS		AMPS,	REMARKS
317-C Transformer	Filament, 59-A & 59-B Amplifiers	50-60	1-2 1-3 1-4	107.5 115.0 122.5	5-6 7-8-9 10-11-12 13-14-15	2.52 10.0 5.0 5.0	6.0 0.70 2.0 2.0	8, 11 & 14 are Center Taps for Windings, 7-9, 10-12 & 13-15
319-▲ Transformer	Filament, 10-A Radio Receiver	50-60	1-2 1-3 1-4	107.5 115.0 122.5	5-6-7	2.13	8.0	6 is Center Tap, for Winding 5-7
321-A Transformer	Filement, 63-A Amplifier	50-60	1-2 1-3 1-4	107.5 115.0 122.5	5-6-7	10.0	0.70	6 is Center Tap, for Winding 5-7
322-A Transformer	10 Volt Supply, D-94852 & D-94852-B & D Control Unit	50-60	1-2	100	<u>з</u> _4	11.5	0.70	201-8 Plate, W-4, W-2 Etaineformer Laufiffere
325-A Transformer	Filament, 5-A Current Supply Set	50-60	1-2 1-3 1-4	107.5 115.0 122.5	5-7 8-10	2.5 2.5	16.0 16.0	6 & 9 are Center Taps
326-A Transformer	Plate, 5-A Current Supply Set	50-60	10) -3 9) -2 8) -1 7) 6) 5) 4)	107.5 115.0 122.5	11-12-13 14-15-16	40-64 40-64	3.0 3.0	12 & 15 are Center Taps. Taps 10,9,8,7,6,5 & 4 are used to adjust the second- ary voltage.
327-A Transformer	Filament & Plate, D-94531 & D-95036 type Amplifiers except D-95036-E	50 - 65	1-2 1-3 1-4	107.5 115.0 122.5	5-7 8-10 11-13 14-16	5.0 10.0 5.0 834.0	2.5 0.7 2.0 0.108	6, 9, 12 & 15 are Center Teps for Windings, 5-7, 8-10, 11-13 & 14-16
328-A Transformer	Projector Lamp, D-94644 Type, Reproducer Set	60	4-7 3-7 2-7 1-7	100.0 107.5 115.0 122.5	5-6	20.0	12.5	5-6 is part of Winding, 1-7
*332-B Transformer	Filament & Plate, 86-A type Amplifiers	60	1-2 1-3	110 120	4-6 7-9 10-12 13-14	5.0 10.0 1120.0 5.0	2.4 1.92 0.106 2.0	Terminals 5, 5 & 11 are Cen- ter Taps for Windings, 4-6, 7-9 & 10-12
*352-▲ Transformer	Filament & Plate, 91-A Amplifier	60-63	1-2 1-3	110 120	4-6 7-8 9-11 12-14	10.0 5.0 1000.0 5.0	0.64 2.0 0.130 1.2	5, 10 & 13 are Center Taps for Windings 4-6, 9-11 & 12-14
*352-B Transformer	12-A Rectifier	60-63	1-2 1-3	110 120	4-5 6-8	5.0 130.0	6.0 1.4	7 is Center Tap for Winding 6-8
*357-A Transformer	Filament & Plate, 86-B & 86-C Amplifiers	50-60		110-120 110-120	4-6 7-9 10-12 13 ² 14		2.4 1.92 0.106 2.0	Terminals 5, 5 & 11 are Center Taps for Windings 4-6, 7-9 & 10-12
*359-A Transformer	Filament & Plate, 91-B Amplifier	50-60		110-120 110-120	4-6 7-8 9-11 12-14	10.0 5.0 985.0 5.0	1.2 2.0 0.130 2.4	Terminals 5, 10 & 13 are Center Taps for Windings 4-6, 9-11 & 12-14
*359-B Transformer	12-B Rectifier	50-60		110-120 110-120	4-6 7-9 10-12	5.0 10.0 1120.0	2.4 1.92 0.106	Terminals 5, 5 & 11 are Center Taps for Windings 4-6, 7-9 & 10-12
*ASL-2852 Transformer	Filament & Plate, TA-7321 Power Unit	0.9	1-2	115	C-17 C-18 C-19 C-20	17.0 18.0 19.0 20.0		

EQUIPMENT BULLET	IN tes Additions & Chang	89. #	s	OUND	Electric			TRANSFORMERS -
TRANSFORMER	WHERE USED	FREQ.	PRIM WINDING		SI WINDINGS	CONDARY VOLTS	AMPS.	REMARKS
D-87299 Transformer (Now Coded, 310-A)	Filament & Plate, 705-▲ Control Cabinet	60	1-2 1-3 1-4	105 110 115	5-6 6-7 8-9 10-11 11-12	450 450 300 4.65 4.65	0.08 0.08 0.043 3.2 3.2 3.2	TTE TRIANCY & TRI Materier Treatment & TRI
D-SS444 Transformer	Plate, D-58446 Amplifier	25-60	1-2	110	3-3T 3T-4	430 430	0.063	This rating is for 25 Cycl
D-88445 Transformer	Filament, D-88446 Amplifier	25-60	1-2 1-3 1-4	107.5 115.0 122.5	بل ر 5-6	4.5 4.5	3.2 3.2	57 Prilament 5 Flat Notemer 24-1014 Power Ten Tours
D-95557 Transformer	Plate, B-43-A, Amplifier	50-65	1-2 1-3 1-4	107.5 115.0 122.5	5-7	1920	1.73	6 is Center Tap of Winding 5-7
D-95660 Transformer	Filament, TA-7249 Rectifier	50-65	1-2 1-3 1-4	107.5 115.0 122.5	5-7 8-10 11-13 13-16	2.64 10.0 5.0 920.0	14.0 0.7 2.0 0.078	6 is Center Tap for Windin 5-7
D-95661 Transformer	Plate, TA-7249 Rectifier	50-65	1-2 1-3 1-4	107.5 115.0 122.5	5-7	3180	0.198	tenos of Grand tentolina Fint and
D-95998 Transformer	Filament & Plate, D-95036-E Amplifier	50-65	1-2 1-3 1-4	107.5 115.0 122.5	5-7	5.0	2.5	6, 9, 12 & 15 are Center Taps for Windings 5-7, 8-10, 11-13 and 14-16
D-96835 Transformer	Plate, 87-A, B-87-A & 87-C Amplifiers	47-63	1-2 1-3	110 120	4-6	2940	0.121	5 is Center Tap for Windin 4-6
D-96836 Transformer	Filament, 87-A, B-87-A & 87-C Amplifiers	47-63	1-2 1-3	110 120	4-6 7-9 10-12	10.0 10.0 2.59	3.2 3.2 30.0	5, 8 & 11 are Center Taps for Windings 4-6, 7-9 and 10-12
*D-96970 Transformer	Filament & Plate, 86-C & B, & C-86-A Amplifiers	50-60	1-2 1-3	110 120	4-6 7-9 10-12 13-14	5.0 10.0 1120.0 5.0	2.4 1.92 0.106 2.0	5, 8 & 11 are Center Taps for Windings 4-6, 7-9 and 10-12
KS-2261 Transformer	Filement, 520-A, 521-A and D-94836 Panels	60	1-2 3-4	110	5-9 6-8	14.0	12.0 10.0	7 is Center Tap
KS-2264 Transformer	Plate, 520-A & D-94836 Panels	60	1-2 3-4	110 220	5-7	2200	0.7	b is Center Tap of Winding 5-7
KS-6154 Transformer	Filament & Plate, 700-A Control Cabinet	20	4(star) 1 2 3	c) 90 65 75 85	5-6 7-8 9-11	5.0 5.0 800.0	3.2 3.2 0.10	10 is Center Tap for Windin 9-11
KS-5155 Transformer	Filament & Plate, 701-A Control Cabinet	50-60	1-2 1-3 1-4 1-5 1-6 1-7 1-8	100 105 110 115 120 125 130	9-10 11-12 13-14 15-16 15-17 18-20	5.0 5.0 550 350 400 900	3.2 3.2 3.2 0.06 0.06 0.06	19 is Center Tep for Windi 18-20
*T-5797 Transformer	TA-4151 Loud- speaking Telephone	50-60	BL-BL	105-125	-	-	-	See E.B. "Loudspeaking Tel. phones, TA-4151 & TA-4153 Types", File 4,22.
*T-7186 Transformer	TA-4165 Loud- speaking Telephone	50-60	BL-BL	105-125	-	-	/-	See E.B. "Loudspeaking Tel phones, TA-4165 & TA-4166 Types", File 4.22.

Arr276 Filament in the state June Ju	TRANSFORMER	tes Additions & Chang WHERE USED	gene and	PRIM. WINDINGS		SEC WINDINGS	VOLTS	AMPS.	REMARKS
Filament & Plate, (arger Products Oc.) Filament & Plate, Ta_illWi Power Unit 50 to 02.5 1-2 1-3 105 1-3 100 1-5 115 1-7 Secondary Supplies Anode and Pilament of Two \$15045 Tunger Bulbs 1002311 Transformer (G.S.Co.) In 220 VOLT ONL- put of XS-5221 Motor Generator State-Transf (G.S.Co.) In 220 VOLT ONL- put of XS-5221 Motor Generator Duit 5-140 1-7 1-2 220 3-4 110 13.6 Hes Flexible Leads Approx. 6" Long 1002311 Transformer (Gayer Products Oc.) Filament & Plate, Ta_iH035 Power 50 to 02.5 1-2 1-7 100 1-5 110 13.6 Hes Flexible Leads Approx. 6" Long 213122 Transformer (Reper Products Oc.) Filament & Plate, Ta_iH035 Power 50 to 02.5 1-2 1-7 100 1-5 Secondary Supplies Anode and Filament of Two \$189048 21312 Transformer (Reper Products Oc.) Filament & Plate, Ta_iH035 Power 50 to 02.5 1-2 1-7 100 1-7 Secondary Supplies Anode and Filament of Two \$189048 7330304 Transformer (Reper Products Oc.) Filament & Plate, Ta_iH035 Power 50 to 02.5 1-2 1-7 100 1-7 Secondary Supplies Anode and Filament of Two \$189048 793204 Transformer (Reper Products Oc.) Filament & Plate, Ta_iH035 Power 50 to 02.5 1-2 1-7 100 1-7 Secondary Supplies	A-7278 Transformer	Filament & Plate, TA-7276 Power	50 to	1-2 1-3 1-4 1-5 1-6	100 105 110 115 120	Coil #1 (Fil.) Coil #2 (Fil.) Coil #1	2.25	17.0 17.0	ALS & Instanti Control & Control Instanti Control & Control Instanti Control & Control Instanti Control
Transformer (Hoyer Products 00.) Tallihit Power Unit $1-2, 5$ 1-3 $1051-6$ $1-3116$ $1051-6$ Filament of Two \$185048 Products 00.) In 220 Volt Out- put of X5-5221 $5-140$ $1-2$ 220 $3-4$ 110 13.6 Has Flexible Leads Approx. b^{\pm} Long Products 00.) Filament & Plate, (G.S.Co.) 50 to Tamaformer (Heyer Durit $5-140$ $1-2$ 100 $3-4$ 110 13.6 Has Flexible Leads Approx. b^{\pm} Long Products Co.) Filament & Plate, Co.) 50 to Tamaformer (Heyer Durit 50 to Ta-4035 Power Unit $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-3$ 105 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-2$ 100 $1-7$ 125 $1-7$ 105 $1-7$ 125	er 25 Cycles) fois ration is . U		1-1	12)	Coil #2	33.0	6.0	Sector State 5-89-0
Into-Fransf. (G.Z. Co.) put of KS-5321 botor Generator Set put of KS-5321 botor Generator Set put of KS-5321 botor Generator put of KS-5321 botor Generator full construction of the full con	(Heyer Products	TA-4144 Power		1-3 1-4 1-5 1-6	105 110 115 120			10 IN 10 IN	Filament of Two #189048
Transformer (Reyer Products Co.) TA-H036 Power Unit 62.5 $1-3$ 105 Filament of Two #189048 21.312 Co.) Tit Tit $1-4$ 110 Tungar Bulbs 221.312 Transformer (Heyer Products Co.) Filament & Plate, Ta-H035 Power 50 to 62.5 $1-2$ 100 Secondary Supplies Anode and Filament of Four #189048 421.312 Transformer (Heyer Products Co.) Filament & Plate, Ta-H035 Power 50 to 62.5 $1-2$ 100 Secondary Supplies Anode and Filament of Two #189048 4325311 Transformer (Heyer Products Oo.) Filament & Plate, Ta-H036 Power 50 to 62.5 $1-2$ 100 Secondary Supplies Anode and Filament of Two #189048 4330304 Transformer (Heyer Products Oo.) Filament & Plate, Ta-H033 Power 50 to 62.5 $1-2$ 100 Secondary Supplies Anode and Filament of Two #189048 4799827 Transformer (Heyer Products Oo.) Filament & Plate, Ta-H033 Power 50 to 62.5 $1-2$ 100 Secondary Supplies Anode and Filament of Two #189048 4799827 Transformer (H.E. & Mfg. Co.) KS-7146 type Sets 50 to 62.5 $1-2$ 100 100 Secondary Foeds a Rector Unit which has an output of 2.0 Amps. at 20.0 Volts.	#79884 Auto-Transf. (G.E.Co.)	put of KS-5321 Motor Generator	5-140	1-2	220	3-4	110	13.6	
Transformer (Heyer Products Co.) TA-4035 Power Unit 62.5 1-3 1-4 105 1-6 Filament of Four #189048 #325311 Transformer (Heyer (Heyer (Heyer (Heyer (Heyer (Heyer (Heyer (Heyer Co.)) Filament & Plate, TA-4036 Power Unit 50 to 50 to 52.5 1-2 1-5 100 1-2 100 1-5 Secondary Supplies Anode and Filament of Two #189048 #30304 Transformer (Heyer Products Co.) Filament & Plate, TA-4035 Power Unit 50 to 50 to 52.5 1-2 1-5 100 1-5 Secondary Supplies Anode and Filament of Two #189048 #300304 Transformer (Heyer Products Co.) Filament & Plate, TA-4033 Power Unit 50 to 50 to 50 to 50 to 1-7 1-2 105 1-4 100 1-7 Secondary Supplies Anode and Filament of Two #189048 #300304 Transformer (Heyer Products Co.) Filament & Plate, TA-4033 Power Unit 50 to 50 to 5	Transformer (Heyer Products	TA-4038 Power		1-3 1-4 1-5 1-6	105 110 115 120				Filament of Two #189048
Transformer (Heyer Products Co.) TA-4036 Power Unit b2.5 1-3 105 Filament of Two #189048 #330304 Filament & Plate, Transformer (Heyer Products Filament & Plate, TA-4033 Power 50 to 62.5 1-2 100 Filament of Two #189048 #330304 Filament & Plate, TA-4033 Power 50 to 62.5 1-2 100 Secondary Supplies Anode and Filament of Two #189048 #799827 Tx-1033 Power Unit 50 to 1-5 1-2 100 Filament of Two #189048 #799827 KS-7146 type (W.E. & Mfg. Co.) 50 to 50 to 50 to 50 to 1-2 105-110 5) Aging 1-4 Secondary Feeds a Rector Unit which mas an output of 2.0 Amps. at 20.0 Volts.	Transformer (Heyer Products	TA-4035 Power		1-3 1-4 1-5 1-6	105 110 115 120			70	Filament of Four #189048
Transformer (Reyer Products Co.) TA-H033 Power Unit 62.5 1-3 105 Filament of Two #189048 1-4 110 1-5 11-4 110 1-5 11-4 1-6 120 1-6 120 1-7 125 105 106 #799827 KS-7146 type Current Supply (W.E. & Mfg. Co.) 50 to Sets 1-2 105-110 5) Aging 111-119 Secondary Feeds a Rectox Unit which has an output of 2.0 Amps. at 20.0 Volts.	Transformer (Heyer Products	TA-4036 Power		1-3 1-4 1-5 1-6	105 110 115 120				Filament of Two #189048
Transformer (W.E. & Mfg. Co.) Current Supply 62.5 1-3 111-119 6) Steps Unit which has an output of 2.0 Amps. at 20.0 Volts. Mfg. Co.) Strong Strong Strong Strong 2.0 Amps. at 20.0 Volts.	Transformer (Heyer Products	TA-1033 Power		1-3 1-4 1-5 1-6	105 110 115 120				Filament of Two #189048
	Transformer (W.E. &	Current Supply		1-2 1-3 1-4	111-119	6)Steps 7)2.0 8)Volts 9)Per			Unit which has an output of

h

EQUIFMEN	T EULLETIN Western Sound				OUTPUI	REPEATING	COIL
	REFLACING OUTPUT TRANSF SECTION OF E.B. TRANSFORM						
INDICAT	ES ADDITIONS OR CHANGES.						
		IMPED. RATIO				TANCE (See	
TRANSFOR	MER USE	(OHMS)	SHIELD	L. WINDING	*RES.	H. WINDING	*RES
Output T	ransformer						
113-A	Output, 9-A Ampl	8000:500	E	1-2 & 5-6	20	3-4 & 7-8	31
113-C	Output, 10-A Ampl	3000:500	E	1-2 & 5-6	25.2	3-4 & 7-8	22
120-A	Output, S-B & 17-B Ampls.	6000:500	No	1-2 & 3-4	104	5-6	69
120-F	Output, 34-A & 34-B Ampls.	4000:4000	No	1-2 & 3-4	450	5-6	45
120-G	Output, 32-A Ampl.	4000:2000	No	1-2 & 3-4	210	5-6	45
120-H	Output, 25-C & 51-A Ampls,	4000:35	No	1-2 & 3-4	4.13	5-6	56
127-▲	Output, 42-A & 46-E Ample.	8000: 500: 250	No	1-2-3-4 .	58.5	5-6 & 7-8	92
127-C	Output, 49-A, 49-B, 49-C, 50-A, D-85943, D-86729,						
	& TA-7310 type Ampls. and 207-A Panel	23000:500	No	1-2 & 5-6	67	3-4 & 7-8	322
127-D	Output, 46-A, B, C, D, F type & D-88446 Ampls	7200:8	No	1-2	0.675	3-4 & 5-6	86
28-A	Output, 43-A Ampl.	6500:500	No	1-2 & 5-6	18.2	3-4 & 7-8	20
130-1	Output, 47-A, 47-E, 53-A & 53-E Ampla	25000:200	No	1-2 & 3ml	37.2	5-6	244
131-A	Output, S-C Ampl.	6000:500	No	1-2 & 3-4	105	5-6	69
132-A	Output, 48-A & 54-A Ampls.	25000:200	No	1-2 & 3-4	37	5-6	244
132-0	Output, 62-A, TA-7246 & TA-7261 Ampls	23000:500	No	1-2 & 5-6	56	3-4 & 7-8	274
134-C 134-D	Output, 57-A Ampl.	6800:500	No	1-2 & 5-6	23	3-4 & 7-8	12
139-A	Output, 59-A & 59-B Ampls.	6800:500:8	No	1-2-3	21	4-5 & 6-7	17
144-A	Output, 10-A Radio Receiver	30000:140	No	1-2	12	3-4 · · ·	395
- designed to	Output, D-94531 & D-95036 type Ampls., except	6800:8	No	1-2	0 77	7-5	14
47-A	D=95036-E Ampls. Output, 63-A Ampl.	25000:200	No	1-2	0.37	3-5	243
150-A	Output, 80-A & 80-B type Ample.	25000:200	No	1-2 & 3-4	38	5-6	250
159-B	Output, 86-C & B-86-A Ample.	(4130:12	10	1-2	.515		16
	outpation of a poor simples is the traction	(4130:6		1-IT	349	5.250	
166-A	Output, 86-A type Ampl.	4130:12:6	No	1-JT-2 .	0.49	3-4 & 5-6	12
170-A	Output, PEC 209-A & B Repro. Sets and TA-7391	· / ·					
	Coupling Unit	357000:25	No	1-2	3.4	3-4	440
171-A	Output, 91-A Ampl	(3000:9		1-3	.825	4-5-6-7 .	14
		(1900: 3.5		-			
		(1190					
-95659	Output, B-10-A, C-10-A, D-10-A, B-43-A, C-43-A,			(5-6 & 7-8			
	87-A & TA-7248 & TA-7248-A Ampls	8000:16	No	(& 9-10 &	0°лл	1-2 & 3-4	77.
		600000		(11=12			
	Output, D-95036-E Ampl.	6800:16	No	1-2 & 3-4	0.85	5-7 3-4 & 5-6	17
-90130	Output, D-46-A, D-46-E, H-46-C & F-46-F Ample	18000:5	NO	1-JT-2 .	0.23	ی⊷ر ∞ بسور	59
Repeatin	g Coil						
30-A	Radio Broadcasting Systems	200: 500	No	1-2 & 5-6	13.8	3-4 & 7-8	42.
30-B	D-28449 type Panels & Radio Broadcasting Systems	200:200	No	1-2 & 5-6	18.3	3-4 & 7-8	22.
105-A	201 type Panels	200:50	No	1-2 & 5-6	10		2
111-C	Output, TA-7294 Control Cabinet	600:600	E	1-2-5-6 .	35	300Han 7-8-	3
18-A	Output, 711-A Control Cabinet	200:200	No	1-2 & 5-6	12.6	3-4 & 7-8	12.
-87744	Output, 711-A type Control Cabinet	200:200	No	1-2 & 5-6	12.6	3-4 & 7-8	12.
(now co 118-A)	ded						
	Ant. Coupling, 10-A Radio Receiver (245-E &						
(now	246-4 Panels)	100:1000	E	1-2 & 5-6	0.4	3-4 & 7-8	
coded 1	37-A)						
	"Vertical" Input, D-94255 type Control Cabinet &						
	TA-7253 type Equalizer	5:500	No	1-2	0.114	3-4	4
-96245	TA=7284 Control Cabinet	16:500	No	1-2	0.33	3-4	12.
97823	Music Reproducing Systems	5:500	М	1-2	0.30	3-10	280
(now co	ded						

Note: The "Average" D.C. Resistances are for, (a) the Low windings in series, (b) the High windings in series. These values are <u>for checking purposes only</u>, because of manufacturing limits, to permit the adjustment of turns for inductance unbalance, etc. The "Maximum" or "Minimum" D.C. Resistance may vary 12% from the "Average".

8

			First and the second s Second second seco
in a line			
			De-Solar Tae-7855 bineral Gammakane

the "Aretage" D.L. Ansistances are for (a) the low windings in marice, (t) are usen winding in earlies. Encore values are for <u>consisting supposes only</u>, because of measfacturing limite, permits the adjustment of turns for inductance withinder, etc. The "Maximum" or "Michanne". I. C. Maridatance of the more in "its frances."

> Electrical Hastonik Products, organing Dirt, - Equipment energia and a

May 20, 1336

EQUIPMEN	T BULLETIN SOUND	RANC Electric SYSTEM	7		T	RANSFORMERS -	INPU
	REPLACING INPUT-TR						
	E.B. TRANSFORMERS	- GENERAL, FIL	£ 4.48				
* INDICA	TES ADDITIONS OR CHANGES.						
		IMPED. RATIO				STANCE (See N	
TRANSFOR	MERS USE	(OHMS)	SHIELD	L. WINDING	*RES.	H. WINDING	*RES
Auto-Tra	nsformers						
7-A							
(=A	TA-7257 Network, 200-A, 209-A, ASL-2828 & D-85125 Panels	500:16	No	2-13	-	1-13	10
TA-4183	Music Reproducing & P.A. Systems		No	L-C or H-C		1-C or 10-C	
Induction	a Coil						
#13	521-A Subscriber Set		No	P-P	1.3	S-S	16.
#66	D-85125 Panel		No	1-2	5.6	3-4	79
Input Tr	ansformers						
		500.31.000			-1.	12 1 5 6 7	71.4
208-AD	Input, 518-B Panel	500:14000	No	1-2	54	(3-4-5-6-7-	34
						(12-13-14.	
208-E	700-4 Control Cabinet	600: 80000	E	1-2 & 5-6	5.8	3-4 & 7-8 .	3
208-E	Input, 9-A Ampl	4000: 30000	No	1-2 & 5-6	895	3-4 & 7-8 .	50
208-1		4000: 8000	No	1-2 8 5-6	305	Juli & 7.08	3
226-B	Interstage, S-E & A-S-F Ample	6000:165000	No	1-2	19800	1-4	105
226-G		20000:133000	No	1-2	2190	3-4	69
226-H	Input, 34-A & 34-B Ample.	200:100000	No	1-2-3	58	4-5-6-7-8 .	63
227-1	Interstage, 34-A & 34-B Ample.	20000:133000	No	1-2 & 3-4	2190	5-6 · · · · · · · · · · · · · · · · · · ·	56
227-C 233-B	Input, 25-C & 51-A Ample	35:140000 200:25000	No	1-2 & 3-4	37.4	6-7-8	24
233-D	Interstage, 32-A, D-85943, D-85943-A & E, D-86729,	200120000	NO	1-2 0 3-4	51.4	0-1-0	-
-))-2	D-86729-A & E, and TA-7310 Ampls.	20000: 50000	No	1-2 & 5-6	3020	3-4 & 7-8 .	47
233-E	Input, 32-A, 41-A, A-41-A, 41-B, E-41-C Ample.						
	(See D=38822 Input Transf.)	200: 25000	No	1-2 & 5-6	52.2	3-4 & 7-8 . 3-14 3-4 & 7-8 .	39
233-F	Input, 203-B Panel	500:14000	No	1-2	143	3-14	38
233-0	Input, 42-A Ampl.	16000:64000 20000:180000	No	1-2 & 5-6	2600	3-4 & 5-6 .	52
233-н 233-ј	Input, 42-A Ampl. Interstage, 46-A, 46-E type & D-83446 Ampls. Input, 46-A, 46-E type & D-83446 Ample.	20000:180000	NO	1-2	1/40	June 65 June .	JE.
	* (Replace with 247-A and Det. 1-A, ASP-930						
	Mounting Plate)	250: 250000	No	1-2 & 3-1	70.5	5-6	76
241-4	Mounting Plate) Input, A-10-A, C-10-A & 43-A type Ampls.	275: 3370	No	1-2 & 5-6	62	3-4 & 7-8 .	8
242-B	(Ob-A & (OS-A Control Cabinets	600: 80000	No	1-2 & 5-6	16.5	3ml & 7-8 .	16
246-A	Interstage, 49-A, 49-B & 49-C type, D-85943-E,C,&D	17000.117000		20056	1690	3-4 & 7-8 .	60
247-4	D-86729-B,C & D, D-94531-A & D-95036-A & B Ampls. Input, 46-C,D,E & F type, D-46-B, A-80-E, D-90500.	13000:117000	No	1-2 & 5-6	1090	Jant 6. 1ac .	00
C+ I +	D-94013, TA-7261 & TA-7246 Ampls.	250:159000	No	1-2 & 3-4	75	5-6	57
247-B	Interstage, 46-C, D, E & F type & D-46-B Ampls	16000:100000	No	1-2 & 5-6	2050	3-4 & 7-8 .	52
247-H	Input, 59-A Ampl.	200:135000	No	1-2 & 3-4	15.4	5-6	48
247-J	Input, 7/ma Ample	250: 75000	No	1-2 & 5-6	26.8	3-4 & 7-8 .	39
247-E	Interstage, 59-A & 59-B Ampls	16000:75000	No	1-17-2 .	1150	3-4 & 5-6 .	34
247-L	Interstage, 59-A & 59-B Ample.	17000:113000	No	1-2	1350	3-4	43
257 - A 258-A	Detector Input, 10-A Radio Receiver	1:1	No	1-2			
-)0-2	D=95036-E Ampl.	200: 80000	M	Rd-B1	43.5	Gr-Bl.Wh	57
260-1	Interstage, D-94531 & D-95036 type Ampls., except						
	D-95036-E Ampl	18000:84000	No	1-2	2260	3-5	52
261-1	Input, 59-A, 59-B & 63-A Ampls. (Mid tap for 387				15.0	EC	110
063 -	Transmitter)	200:135000	M	1-2-3-4.	15.2	5-6	48 44
261-в 264-а	Input, 86-A type Ample	200:110000 25:150000	E&M M	1-2 & 3-4	0.06	5-6	39
264-A 264-B	Input, 80-A Ampl	200:135000	M	1-2 & 3-4	15.4	5-6	47
264-c	Interstage, S6-A type Ample	18000:100000	No	1-2	2010	5-6 3-4 & 5-6 3-4	49
285-1	Input, 91-A Ampl.	30:200000		1-2	5	3-4	144
D-88822	Input, 91-A Ampl	200:100000	No	1-2 & 5-6	8.6	3-4 & 7-8 .	39
D-95072	Input, 41 & 53 type Ample. Using 618 Transmitter .	30:150000		1-2 & 3-4	2.26	5-6	39
D-95658	Input, B-10-A, 87-A & TA-7248 & TA-7248-A Ampls	250: 30900	No	1-2 & 5-6		3-4 & 7-8 .	
D-95997	Interstage, D-95036-E Ampl	17000:113000	No	1-2	1370	3-4	39

ove: The "Average" D.C. Mesistances are for, (a) the Low Windings in series, (b) the high Windings in series. These values are for checking purposes only, because of manufacturing limits, to permit the adjustment of turns for inductance unbalance, etc. The "Maximum" or "Minimum" D.C. Resistance may vary 12% from the "Average".

1 PAGES - PAGE 1

Electrical Research Products Inc. OPERATING DEPT. - EQUIPMENT DIV. PRINTED IN U.S.A.

ISSUE #1 May 20, 1936

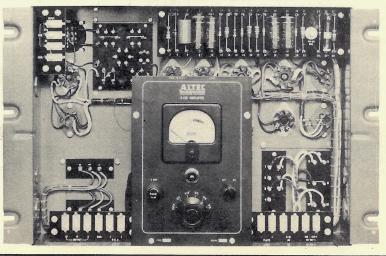
			the second second second	
6000				
			and the second and the second	
			ring, 57% and Anne 27% agus angle Iskeranger, 59% a 59% angle Rine relaye, 59% a 59% angle	
ade .				

SOUND EQUIPMENT BULLETIN

ALTEC LANSING

AMPLIFIER, A-126

1. DESCRIPTION


1.1 The A-126 Amplifier is an all AC operated voltage gain and power amplifier, of recessed panel type construction with a removable front panel. The amplifier consists of 2 voltage stages, a phase inverter and a pushpull stage and has provision for tapped attenuation in steps of 4, 8 and 12 db. It is equipped with an equalizer section for HF and LF equalization which is so designed that there is no insertion loss for any setting of equalization. It supplies plate and filament voltage for 2 Altec Lansing A-121 Cathode Follower Amplifiers as well as for pre-amplifiers. A potentiometer is included in the cathode circuit of the output stage to balance tubes for maximum power and minimum hum.

2. CHARACTERISTICS

GAIN	90 db Max.
ATTENUATION	Taps for 4, 8 and 12 db attenuation from full gain
POWER OUTPUT at 8% Intermodulation or 2% Total Harmonics	15 watts / 41.8 dbm *
FREQUENCY RESPONSE	Flat within 1 db 20-20,000 cps with Equalizer strapped out
NOI SE LEVEL	-27.2 dbm *
IMPEDANCE Input (Source) Output (Load)	30 - 250 - 500 ohms 10 or 20 ohms
VACUUM TUBES	2-6J7; 1-6J5; 2-6L6G; 1-5U4G; 1-0C3 VR
POWER REQUIRED	105/130 volts 50/60 cycles 11C watts
POWER SUPPLIED	85V regulated DC for 2 Altec Lansing A-421 Cathode Follower Amplifiers and PEC'S with 1 milliamp drain. Also 30C V DC at 30 MA - and 6.3 V AC at 2 amp
FUSING	2 Amp. Buss 3 A G
EQUALIZATION	See Correction Data - Page 2
DIMENSIONS	12-1/4" high x 19" long x 9-1/4" deep
WEIGHT	39 lbs.

39 lbs. * dbm uses a reference level of 1.0 milliwatt (0.001 watt). To correct to reference of 6.0 milliwatts (0.006 watt) subtract algebraically 7.8 db.

ASSOCIATED DRAWING - 3885

2 Pages - Page 1

Issued by Engineering Department Printed in U. S. A. January 13, 1946 Issue #1

ALTEC SERVICE CORPORATION

ALTEC LANSING

AMPLIFIER, A-126 SOUND EQUIPMENT BULLETIN

3. EQUALIZATION

50.03

3.1 An equalizer, a simplified circuit of which is shown in the lower left hand corner of Drawing 3885, is incorporated as an integral part of this amplifier which provides a large number of combinations of equalization. Basically, it permits of individual settings of Low End droop, Low End rise, High End cut-off and High End rise.

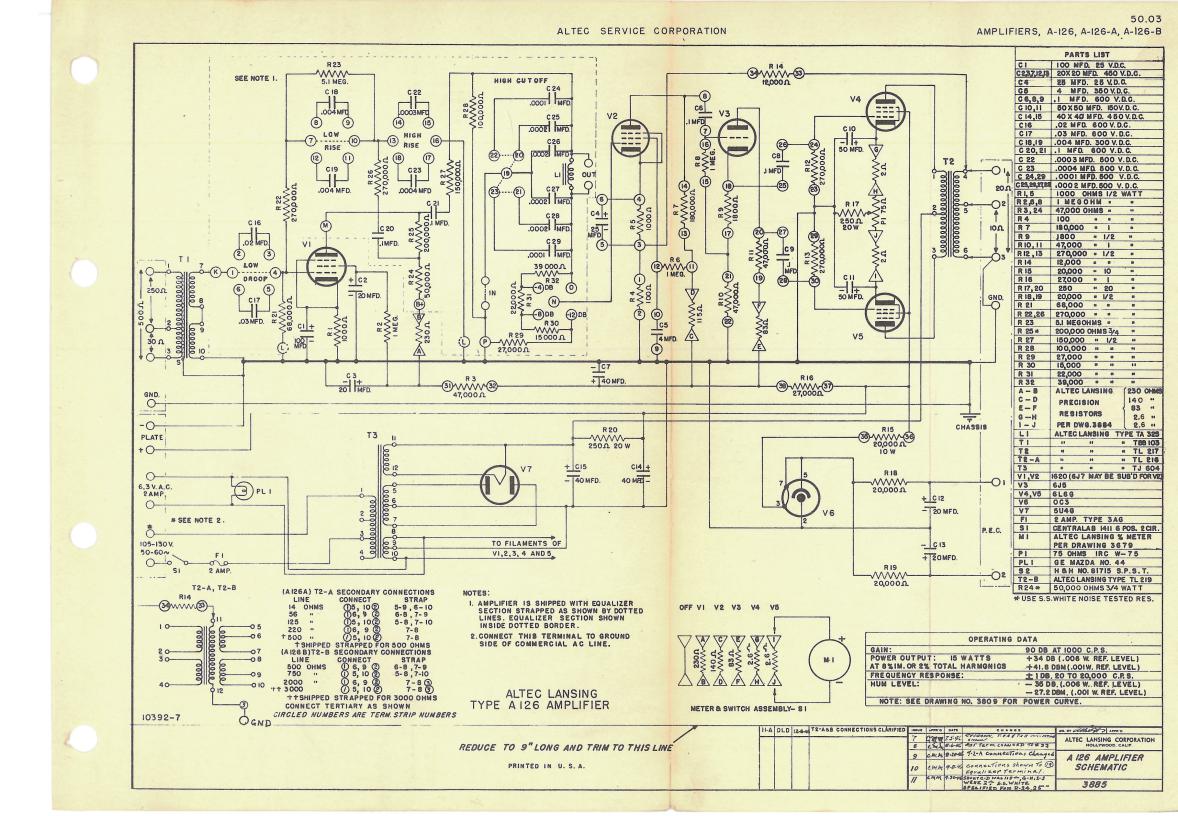
The	low	droop	section	involves	equalizer	terminal	s 1,2,3,4,5,6	normal	flat	1-4
11	11	rise	II	H	11	"	7,8,9,10,11,12	**	11	7-10
11	high	1 11	11	11	H	н	13,14,15,16	11		open 13 and 16
"		cut-of	f "	H	"	1 11	In, Out, 19, 20, 21, 22	11		Out, (no strap on "In")

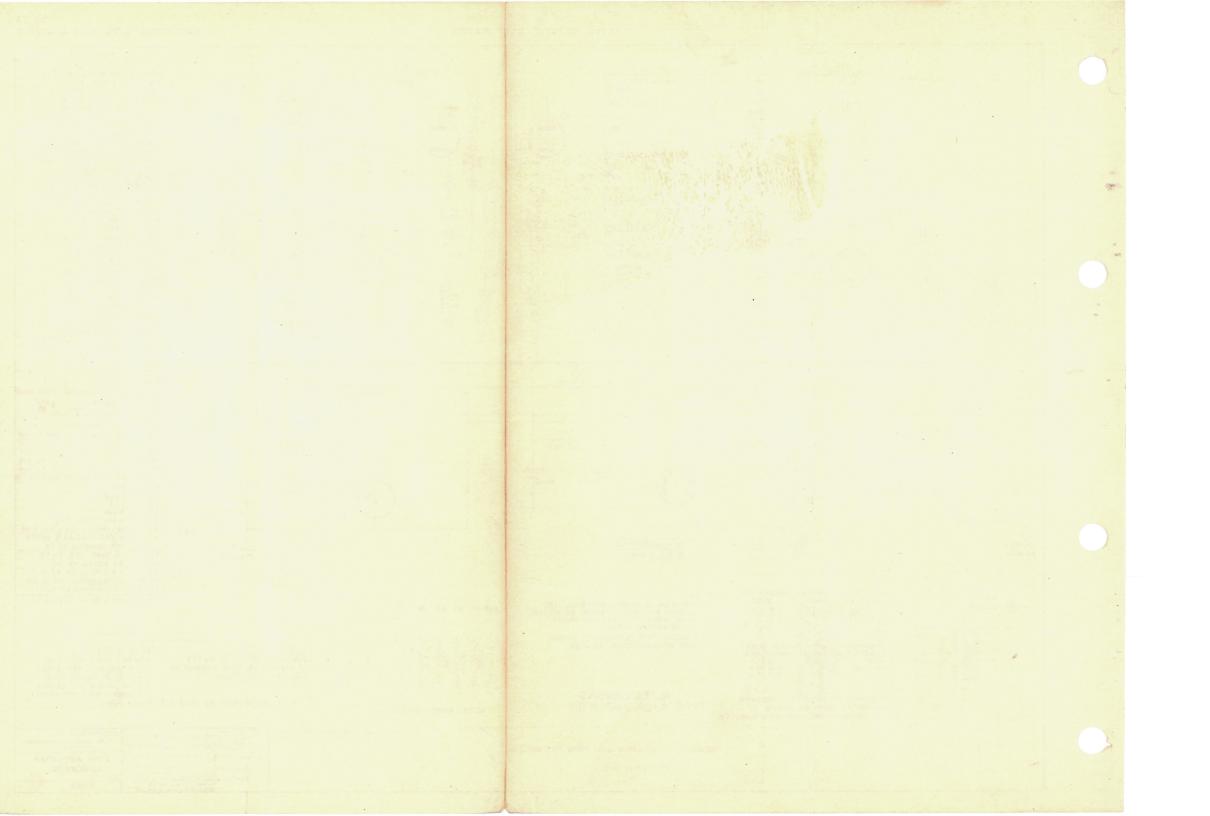
A combination of the various strappings listed in the correction chart will provide practically any equalization curve desired for a given condition.

The equalizer consists of 4 individual equalizer sections any one of which may be employed separately or combinations of any 2 or more sections can be used collectively. For example, a combination of low droop classification 11, low rise class 23, high rise class 32, and high cut-off class 41 may be made to result in an overall correction of the algebraic total of the classes as follows:

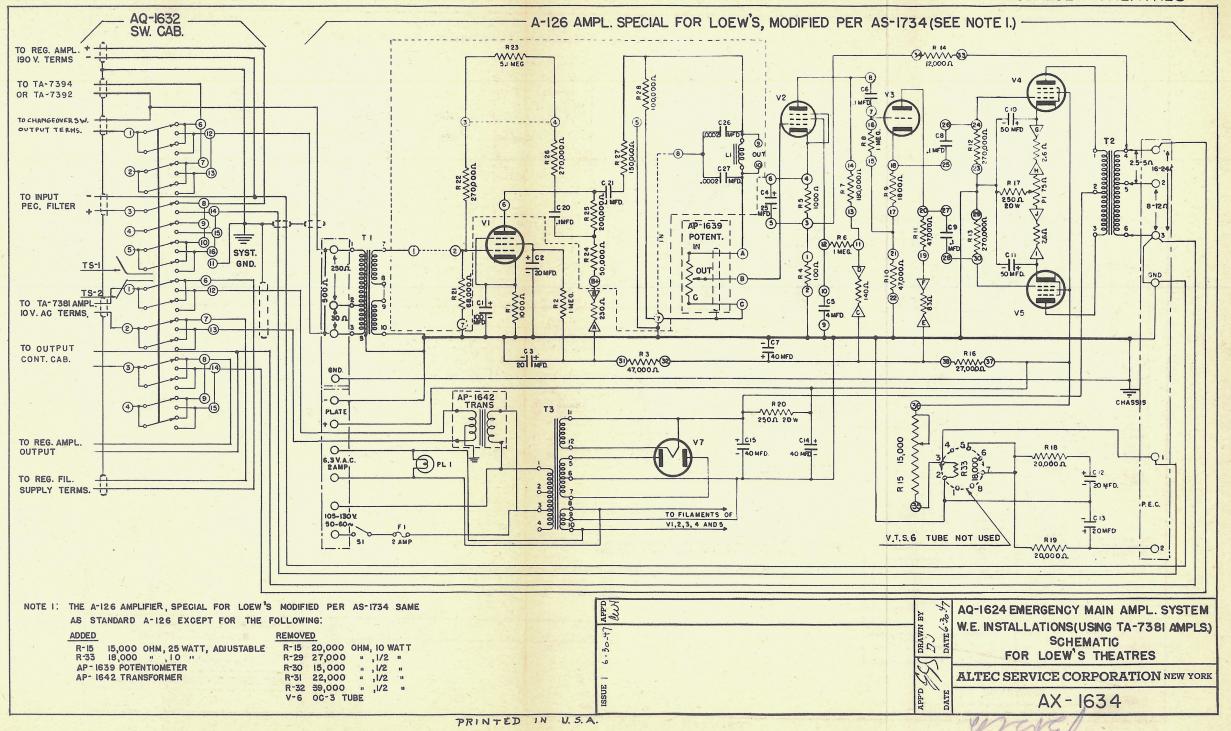
		40	55	70	130	300	500	1000	2000	3000	5000	7000	8000
Class	11	1.6	0.8	0.6	0	0	0	0					
11	23	-4.2	-4.0	-3.8	-2.0	-0.4	0	0					
. 11	32								-0.8	-1.6	-3.2	-4.4	-4.8
.11	41								0	0	1.0	3.6	5.6
Total		-2.6	-3.2	-3.2	-2.0	-0.4	0	0	-0.8	-1.6	-2.2	-0.8	+0.8

As shipped the strappings are: 10-20-30-44

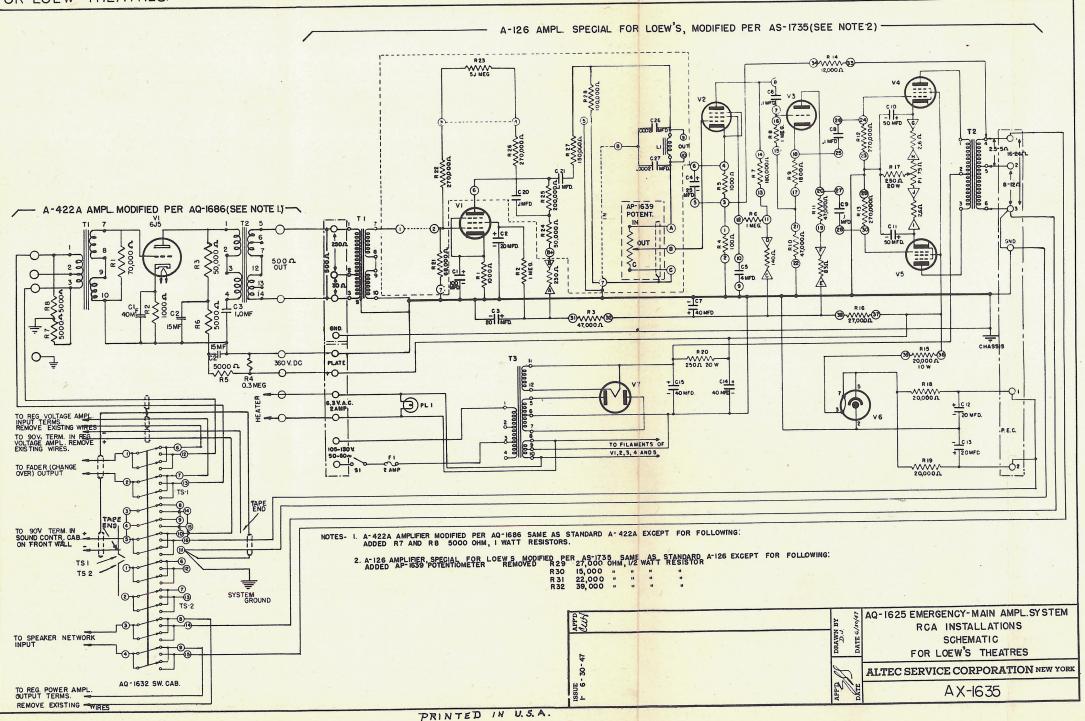

When equalization is required of less than all 4 sections, the remaining and unused sections must be strapped for flat response.


CORRECTION FACTORS FOR EQUALIZER STRAPPING FREQUENCY

Section	Class	Strapping	40	55	70	130	300	500	1000	2000	3000	5000	7000	8000
	10	1-4	0	1.0	0	0	0	0	0				1	
Low	11	1-2-6, 3-4-5	+1.6	+0.8	+0.6	0	0	0	0					
Droop	12	1-6,4-5	+3.2		+1.2	0	0	0	0					
	13 14	1-2,3-4	+5.6	+4.0	+2.8	+1.0	0	0	0					
<u> </u>	14	1-2, 3-6, 4-5	+9.8	+7.2	+4.2	+2.4	+0.2	0	0			1		
	20	7-10	0	0	0	0	0	0	0					
Low	21	7-8-12,9-10-11	-2.0	-1.2	-0.4	0	0	0	0					
Rise	22	7-8,9-10	-4.0	-2.8	-2.2	-0.8	0	0	0					
	23	1-246,3-4-5,7-8, 12-9,11-10	14.2	-4.0	-3.8	12.0	10.4	ran	2		5.00			
	24	7-8,9-12,10-11	-5.6	-5.2	-4.4	-2.4	-0.6	0	0		2			
	30	No straps on 13 and 16							0	0	0	0	0	0
High Rise	31	13-14,15-18, 16-17							0	-0.2	-0.8	-2.0	-2.8	-3.2
	32	13-14,15-16							0	-0.8		-3.2	-4.4	-3.2 -4.8 -6.2
	33	13-18.15-17						12.4	0	-1.2	-2.4	-4.0	-5.6	-6.2
	34	13-14-18, 15-16-17		4					0	-2.4	-3.8	-5.4		
	40	Out	-Parisa				24	100	0	0	0	0	0	0
High	41	1-4,7-10 In							0	0		+1.0	+3.6	+5.6
Cut		19-22-23 In	-						0	0	0		+5.2	
Off	43	19-20-21 In		1 minut	-	-			0	0	+0.4	+1.6	+7.6	+11.2
	44	19-20-21-22-23 In	2.						0	0	+0.2	+2.4	+9.6	+13.2


January 18, 1946 Issue #1

2 Pages - Page 2



50.38 A.L. EMERGENCY SYSTEM, FOR LOEW THEATRES.

50.38 A.L. EMERGENCY SYSTEM, FOR LOEW THEATRES.

ALTEC	SERVICE CORPORATION ALTEC LANSING	50.38 SYSTEMS,	
SOUND	EQUIPMENT BULLETIN	AMPLIFIER	

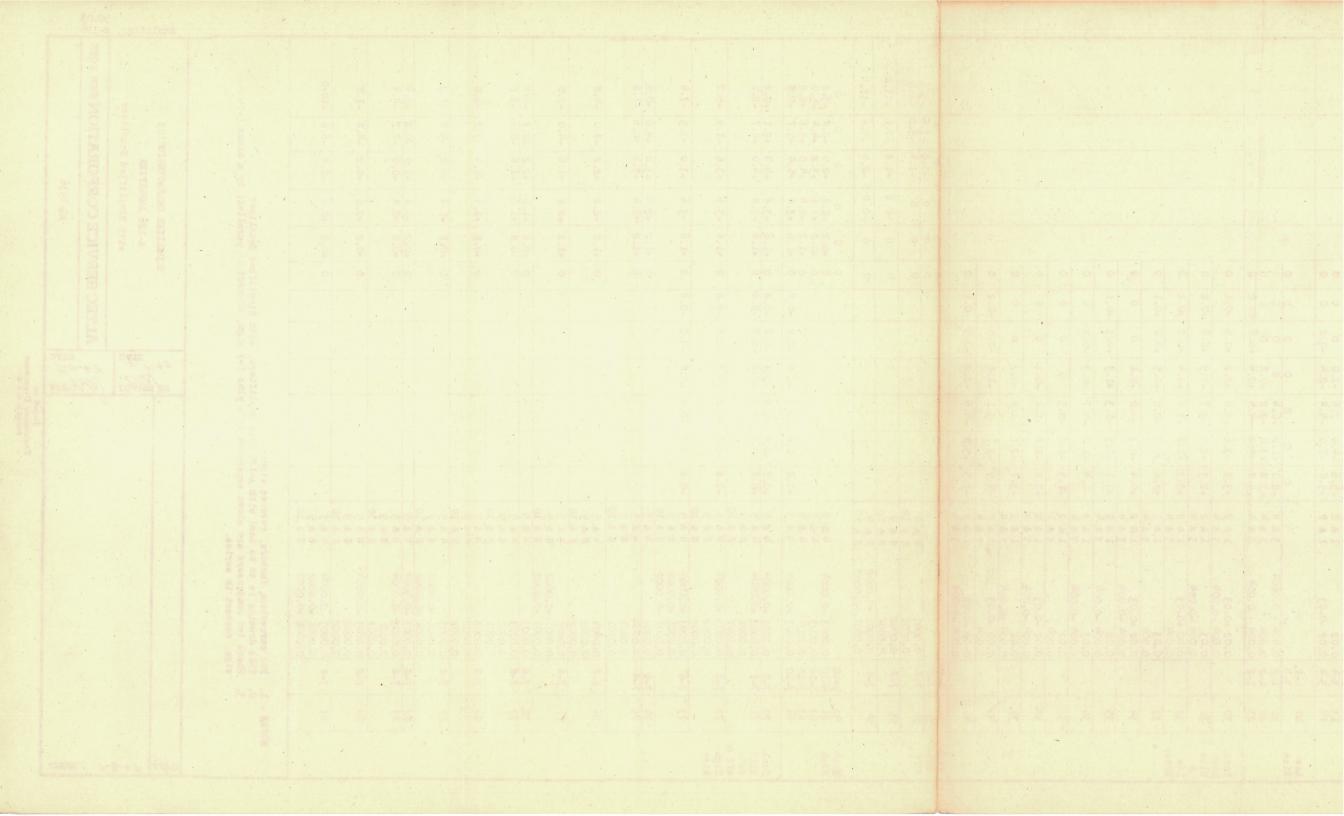
1. PURPOSE - Hum reduction in Altec Lansing Amplifier Systems.

- 2. <u>A-421 Gathode Follower, 721 Control Cabinet & A-126 Amplifier</u>. Both the ground and hot side of the A-421 should be carried to the respective change-over cabinets in two conductor shielded wires which has an outer cloth or rubber covering so that its shield is insulated from the other shields. The common terminal of each 721 Cabinet should go to the ground position on the A-126 Amplifier in such a way that the only circuit ground for all three of these items is at the A-126 Amplifier.
- 3. <u>A-420</u>, <u>A-422</u> and <u>A-422-A Amplifiers</u>. The strap between "-Plate" terminal and the chassis ground lug should be removed. All pre-amplifiers now shipped from the factory have this modification. The "-Plate" of the pre-amplifiers will go to ground through the power supply.
- 3.1 Additional hum reduction may be obtained in the A-422 and A-422-A Amplifiers by replacing Resistor R-8, 10,000 ohms with 2 - 5000 ohm resistors connected in series. Disconnect 1 - 15 mf section of C-2 and connect to the junction of the 2 - 5000 ohm resistors.
- 4. <u>A-126 Amplifier</u> The ground lug on the lower left hand terminal strip is the main ground. This lug may also be used as "-Plate" as it is strapped internally to the "-Plate" terminal on the lower right hand terminal strip. On early amplifiers the ground lug on the upper left hand terminal strip should be used only to ground the shield of input cable or one side of input line, if that is required. New A-126 Amplifiers have the ground lugs on the upper left hand and lower left hand terminal strips tied together so that they may be used indiscriminately.

1 Page - Page 1

Issued by Engineering Dept. Printed in U. S. A. Nov. 4, 1946 Issue #2

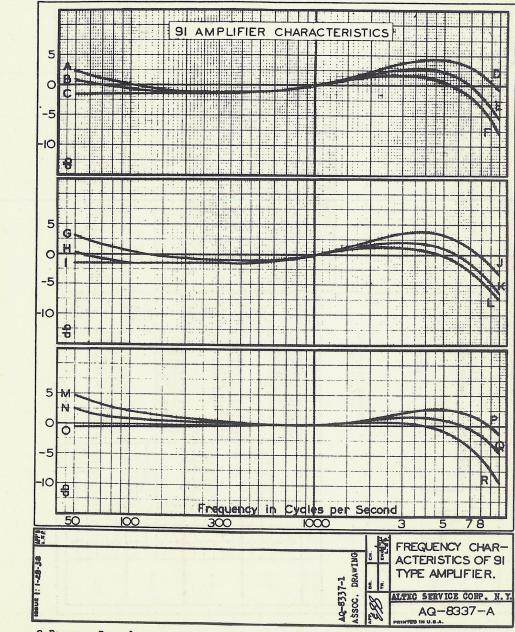
restant terringed galanel oatla at astesdar ant - 200201

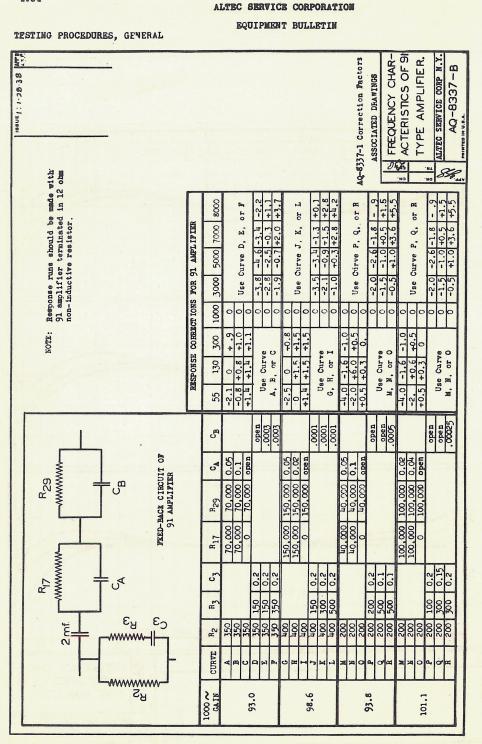

A 421 dethode Yeliquer, 21 Control Cobinet & A-125 Amiliator Noth the ground and het side of the A-421 should be carried to the respective charge-over soluters in two emmunter and and its shield is insulated from the other shields. The common terminal of each V21 Cobinet should go to the ground position on the A-125 Applifier in such a way that the only circuit ground for all tires of these itoms is at the A-135 Applifier.

A-120, A-422 and A-422-A Amplifiers. - The strap between "-Flate" turning and the chassis ground ing should be the novel. All pro-shilifiers now shipped from the factory bave this modification. The "-Flate" of the pro-amplifier will go to ground through the power supply.

(Additional hum reduction may be obtained in the A-W22 and A-W22-A Amplifiers by replacing Resistor R-8, 10,000 chus with 2 - 5000 chm resistors connected in cartes. Disconnec 1 - 15 of section of 6-2 and connect to the punction of the 2 - 5000 chm resistors.

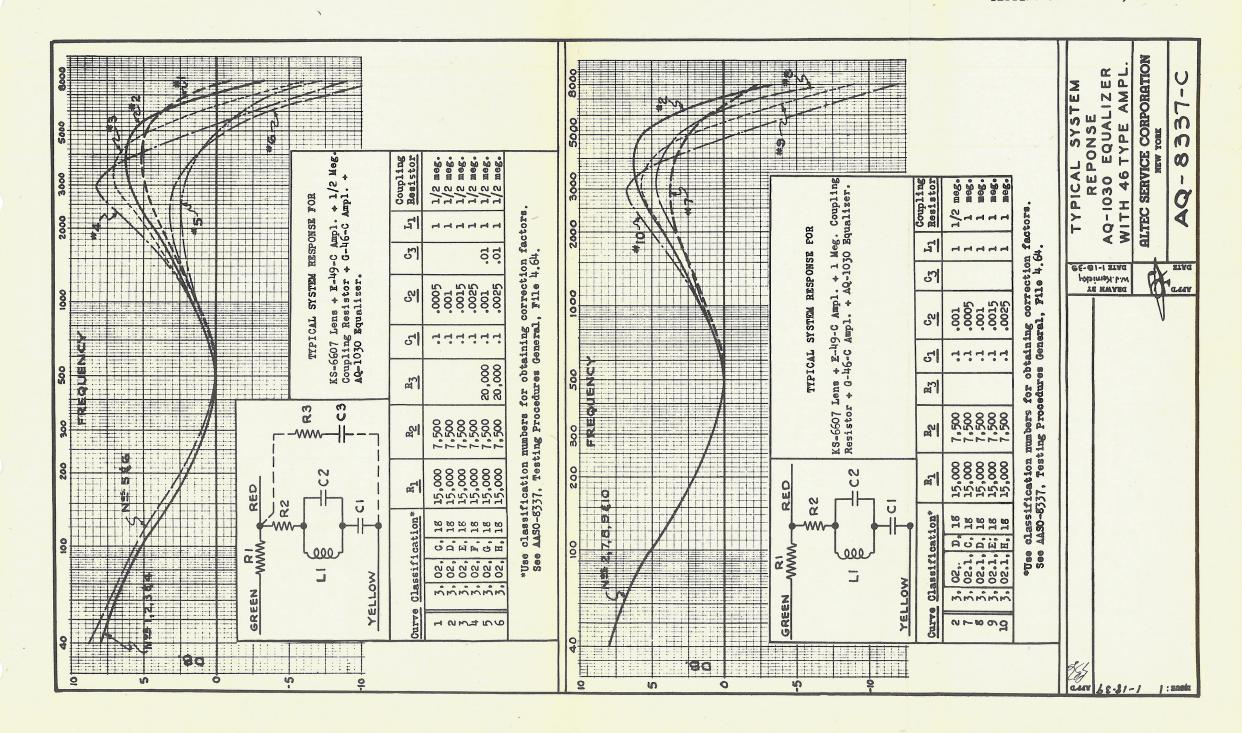
A-120 multiller - The ground ing on the lower lot's mand terminal strip is the rain ground. This is any size he used as "-Plate" as it is strapped internally to the "-Plate" terminal on the lower right hand terminal strip to sarly multiflers the ground lug on the upper left hand terminal strip should be used only to ground the shell of input onble or one side of input line, if that is required. Now A-125 Applitions have the ground ings on the upper left hand and lower left hand torminal strips the together so that they may be used indiscriptions.

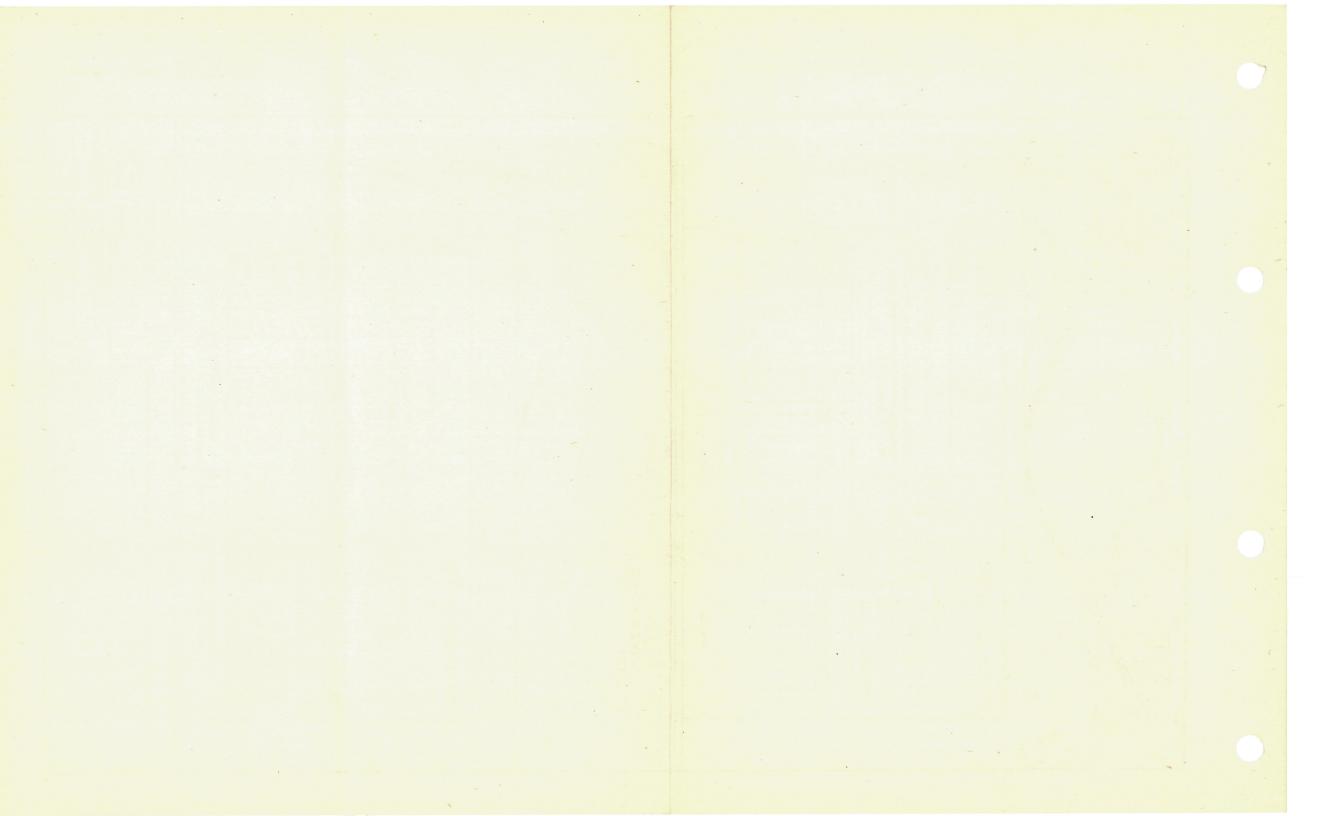

									Len .	Issued by gineering Depart Printed in U. S. A	Engine							
0.03 -126	ON NEW YORK	ATIC	CORPORATION M-1936		SERVICE	SER	ALTEC		2-4-8-2 2-4-8-2 Thead									/ 2095
50 ifier, A-	zer	Equalizer		6 AMPLIFIER Simplified	A-126 with S					i								4-8-2
Ampli		STICS	CHARACTER ISTIC		EQUALIZER	EG			1-+ 19	9								a fir
	· (-)	inus	ру в п		l Equalizer n parallel;	Simplified] connect in	Simol conn	with sign,	Amplifiers, 7 a plus (+)	y a pl	18 26 Type rated by	se signs th A-126 m separat	a factors, rever is to be used wi densers are show in series.	For correction fac This drawing is to Where two condense sign, connect in s	r corr are tw gn, co	10°5	- Sulon	JA
	-10.0	-6.8	† .0-	+0.6	10.2	0							4 & 5 8 & 9 8 & 10		0.000	7=8	85	
	-7.8	-4.8	+0.2	+0.6	+0.2	0							0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	000.0	7-8	84	
	-2°4	-2.2	+1.0	+0.8 +0.8	+0.2 +0.2	00							4 4 8 8 8 8 8 8 7 0 0 0 7 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7	13 -0.0004 13 -0.0004	0.000	7-8	82 83	
	+	-5.2	+0.8	4.1.+	+0.8	0							8 & 9 8 & 9 8 10	99	0.000	7-8	81	
	-6.0	-3:2	+1.4	+1.1+	+0.8	0							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1200	0.000	7-8	80	
	-3.0	+0.8 -0.6	+1.8	+1.6	+0.8 +0.8	00			* 				4.4 % % % %		0.000	1-00	<u>81</u>	
	-7.0	0.4-	+1.6	+2.2	+1.2	0		ender in				•	4 8 8 9 8 8 9 0 1 0 1 0	1 +0.0002	0.000	7-08	11	
· · · ·	-4.8	-2.0	+2.2	+2.2	+1.2	0							す 888 50 50 50 50 50 50 50 50 50 50 50 50 50	1 Q Q	0.000	7-8	16	
	-1.8	+0.6	+2.6	+2.4	+1.2	0							1 00 00 1 0 00 1 000 1 0 00 1 00 1 0 00 1 0 00 1 00		0.00	1-8-1	15	-
			+3.0	+3.6	+1.6	0 0	-0.8	-0.8	-0.8	0.0	-0.8	-0.8	4 8 8 8 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	03 +0.0004 01 +0.0002 01 +0.0002	0.000	7-8	73	
		-1.9	+3.6	+3.6	+1.6	0	-0.8	-0.8	-0.8	-0.8		-0.8	0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ŷ		7-8	72	High Rise
		+2.1	0.4+ 4.0+	+3.8	+1.6	00	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	8888 8888 9000	99	0.0003	7-8 7-8	11 10	Comb. High Cut-
		51 51 51	0 N N N N N N N N N N N N N N N N N N N	+1.6 +3.8	+1.6 +1.6	00000	-0.8	-0.8	-0.8	=0. 8	-0.8	-0.8	25555 2555 2555 2555	13 -0.0004 14 15 10.0004	0.0003 0.0003 0.0004 0.0004	01-00-00-00-00-00-00-00-00-00-00-00-00-0	ଌୢଌୄଌଌ	High Rise
	-11.0	-7.6 -9.6	-1°8 -2°h	-0.2	0 0	0,0							8 & 10 8 & 9 8 & 10	02 01 +0.0002 01 +0.0002	0.0002 0.0001 0.0001	2-08	古	
			-1.0 -1.4	000	000	000							න හ හ	10 10	0.00	7-8	52	Cut
						0	-0.1	-0.5	-2.2	-4.6	-5.8	-7.5		-0.03	0.02		Гђ	
						0	-0.2	-0.5	-1.6	-3.1	-3.7	-1.6- -4.9		-0.03	0.02		R 29	
						0	0	0	-0.1	-1.1		-3.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.004 -0.004	0.02		38	
						0	0	0	0,			0		+00.004	0.02		37	
				•		0 0	1.0+	-0.1	+1.3	+1.3	-1.0	+0.1		-0.004	0.02		35	
						0	0	0	+0.1	+0.2	10.3	+0.4		+0.03	0.02		34	
						0	+0.1	+0.2	+0.5	10.8	7.0+	+0.6			0.00	•	33	Droop
						0	+0.2	+0.6	+1.9	+2.7	+2.5	+2.3		-0.004	0.03		R	Rise
•						0	+0.1	+0.5	+2.2	+3.4	+3.6	+3.8		+0.03 -0.03	0.02		R	Comb.
						000	0.0	0.0	0 0 0 t	+0.4	+1.2	+7.8	なまれ	+ 0.004	100.00 100.00	1-1-1	ដ ដ ដ	0
						0	0	-0.8	-2.4	-5.4		-9.8	2	-0.03		3-4	14	Low
						00	00	00	-1.0	-2.6	0.4-	-5.6	1 & 2	20.0	0.02	44	13	

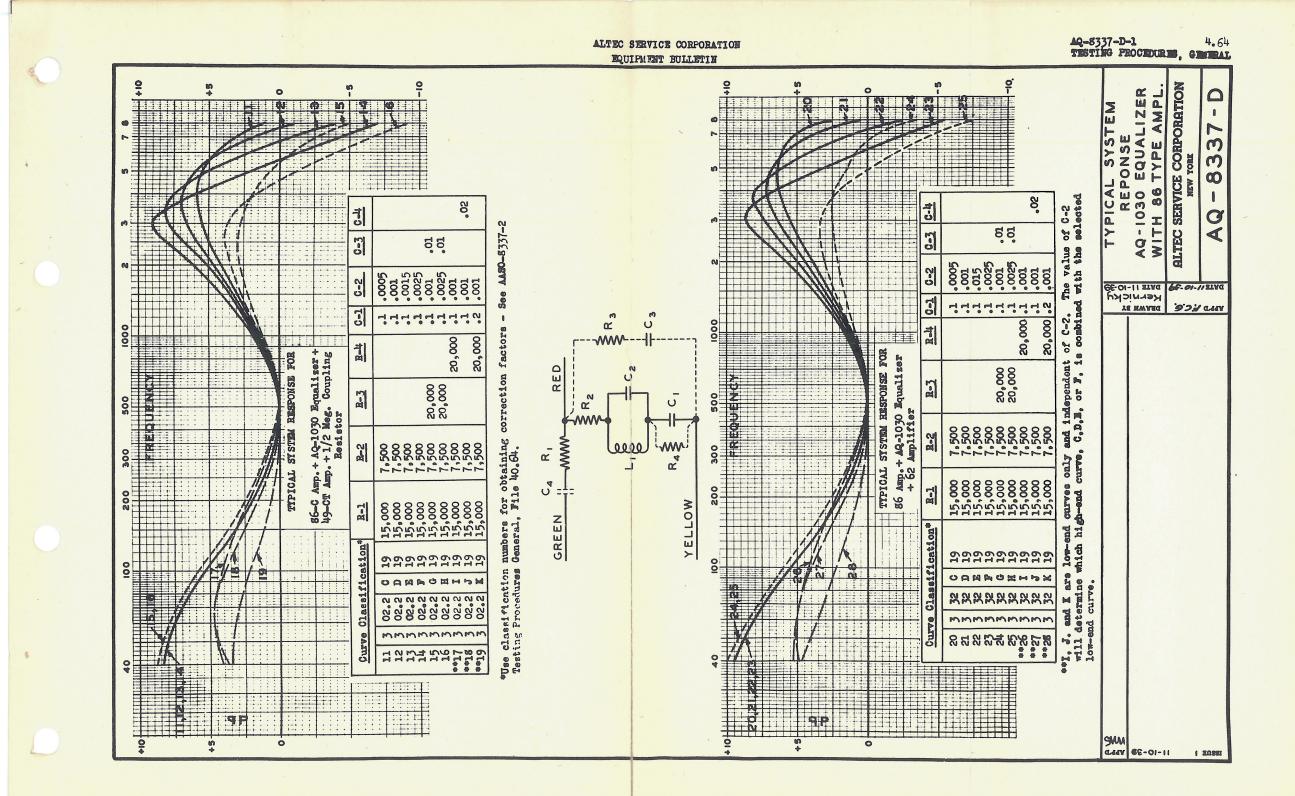

ALTEC SERVICE CORPORATION

EQUIPMENT BULLETIN

4.64 TESTING PROCEDURES, GENERAL




2 Pages - Page 1




2 Pages - Page 2

AQ-8337-C-1 4.64 TESTING PROCEDURES, GENERAL

TESTING PROCEDURES, GENERAL TWO-TERMINAL, R-C EQUALIZER DESIGN

4.64

1. INTRODUCTION

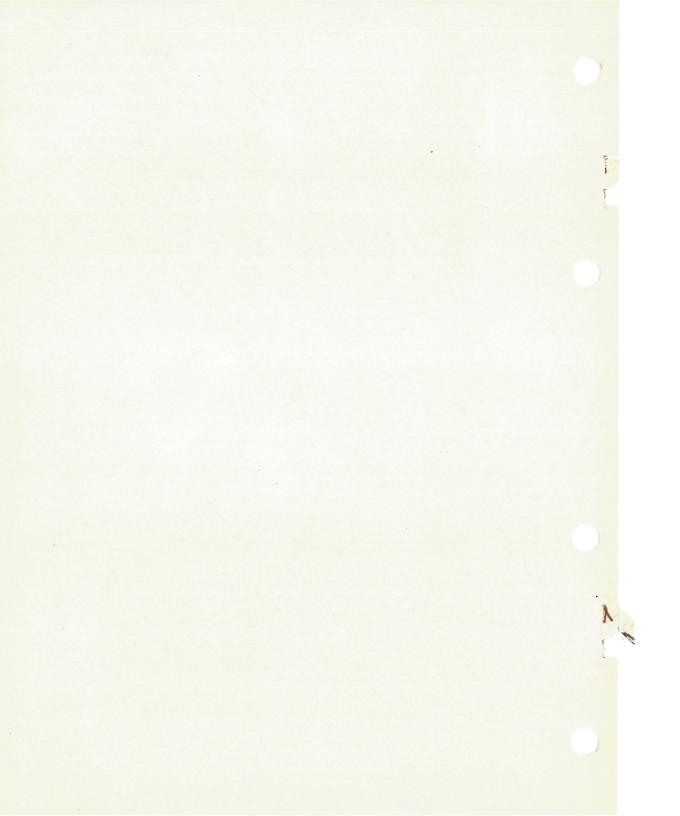
- 1.1 The variety of equalizer curves which satisfies all possible requirements is, of course, limitless. To realize most of such curves would require complicated network configurations and the design mathematics would be extremely involved. Furthermore, since coils would very often be required, it would frequently be very difficult or time-consuming to obtain the required elements.
- 1.2 There is a type of equalizer, however, employing only resistors and condensers, the design of which can be readily calculated from charts. Such equalizers are of particular value in the field since the elements are readily available, the design can be completed in a few minutes, and their properties are such that a large part of the equalizer problem can be solved with them. The purpose of this memorandum is to describe the methods of design of such equalizers.
- 2. DESCRIPTION OF CURVES
- 2.1 The curves obtainable from these two-terminal R-C equalizers are given on AP-1076, attached. There are four general types:
- 2.11 Low Droop or High Rise. (The difference is only a matter of location on the frequency axis.) Note that this family of curves is flat at the low and high extremities and rises with frequency over an intermediate range. These curves are distinguished from each other by overall db difference between the transmission at the two extremities and by the "Frequency of the half-way point". The curves are drawn with the half-way point falling at 1000 cps., but this point may be shifted to any frequency by proper choice of the elements used. A particular curve labeled "LD 6 db, f 1/2= 400 cps." has 6 db overall difference between extreme highs and extreme lows, and at 400 cps. the transmission is 3 db above the extreme lows or 3 db below the extreme highs. LD or HR curves are obtained by a parallel R-C pair connected in series with the line.
- 2.12 Low Rise or High Droop. These curves have the same shape as the LD, HR curves but drop off as frequency rises. They are obtained by connecting a series R-C pair across the line.
- 2.13 <u>High Cutoff</u>. Sharp cutoffs are not given by these curves but either the "single" or the "double" serves in most cases. The "single" curves are defined by the frequency at which transmission is down 3 db, and the "double" curves by the frequency of 6 db attenuation. The "single" cutoff is obtained by connecting a condenser across the line. The "double" cutoff is provided by two similar "single" cutoffs at <u>isolated</u> parts of the circuit.
- 2.14 Low Cutoff. These are similar to the high cutoffs but affect the low end of spectrum. The "single" low cutoff is obtained by connecting a condenser in series with the line.
- 3. METHOD OF DESIGN
- 3.1 An equalizer design problem usually begins with two curves: the response of the system unequalized, and the desired response. Subtract the actual from the desired characteristic to obtain the required insertion characteristic of the equalizer. Plot this to the same scale as AP-1076.
- 3.2 By inspection, determine which curve type on AP-1076 best fits the required insertion characteristic. Place the sheet containing the required insertion curve over AP-1076; hold the combination between the eye and a light source; adjust the two sheets, keeping the 0 db axis of both sheets aligned, until the best fit of some curve of AP-1076 with the insertion curve is obtained. Note the number of db overall of the selected curve on AP-1076 and the frequency at which its half-way point (1000 cps. on AP-1076) falls on the scale of the insertion curve. Call this the "frequency of the half-way point."
- 3.3 We have now found the values of "DB Overall" and "frequency of the half-way point" of the desired curve. One additional item must be evaluated: the value of R₀' for LR, HD or HC or the value of R₀ + R₁ for LD, HR or LC. These values apply to the circuit into which the equalizer will be connected.
- (a) Ro' is the parallel combination of all impedances to ground at the part of the circuit across which (to ground) the equalizer will be connected. This section begins with the plate of a tube or a loss device like a fader and the grid of the next tube or a loss device.
- (b) R₀ + R_L is required 'when the equalizer is inserted in series with the ungrounded side of the circuit. R₀ is the parallel combination of the impedances to the left (toward the source) and R_L is the combination of impedances to the right of the point where the equalizer will be inserted.
 3 Pages Page 1 Issued By Issue #1

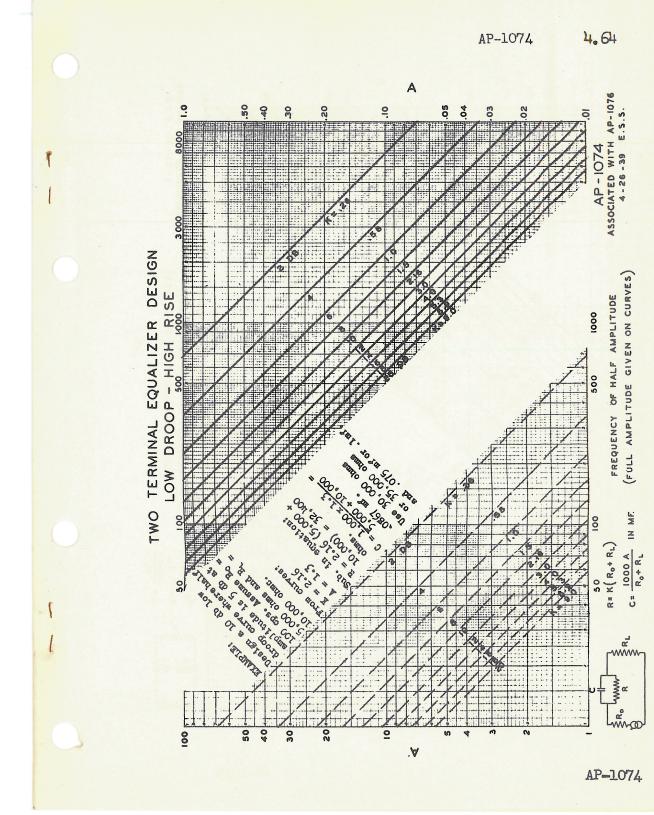
- Page 1	Issued By		Issue #1
	Engineering & Merchandise	Department May	11, 1939

TESTING PROCEDURES, GENERAL TWO-TERMINAL, R-C EQUALIZER DESIGN

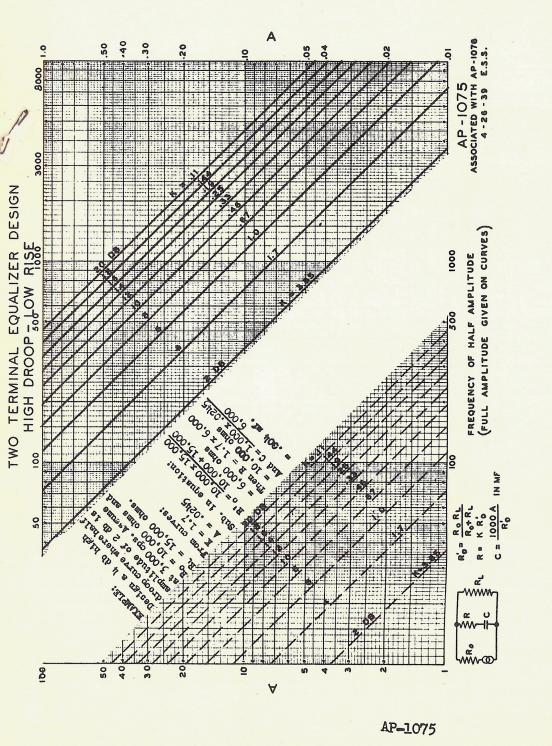
Example: An HD equalizer is to be inserted between V1 and V2 of the 46 type amplifier. Combine the plate impedance (15,000 ohms) of V1, the plate feed resistance (100,000 ohms) and the resistance of the voltage divider (180,000 ohms) all in parallel. This gives a value of 12,000 ohms for Ro'. If HR or LD or LC is required, combine 12,000 and 100,000 ohms in parallel to obtain 13,000 ohms for Ro, and, since RL is 180,000 ohms, Ro + RL is 193,000 ohms.

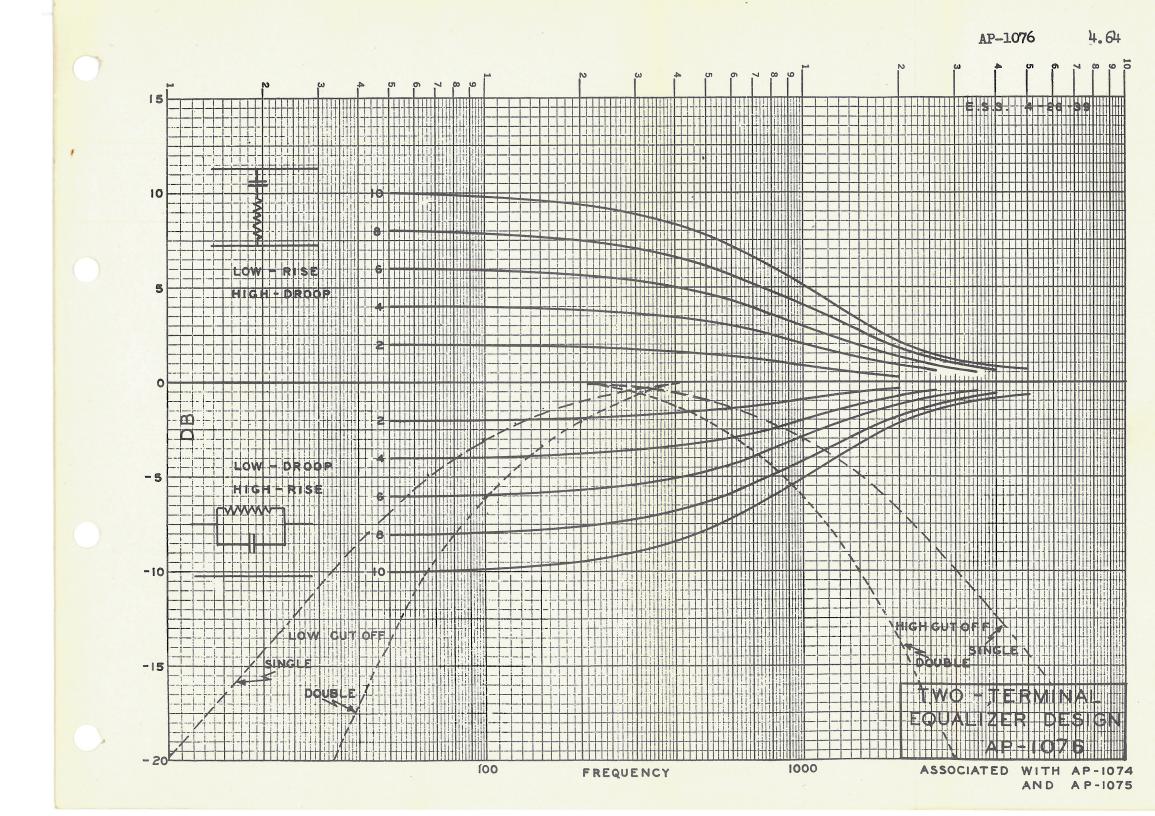
- (c) When it is more convenient to measure than compute these values, the procedure is as follows: Connect a variable resistance between the two points to which the proposed equalizer will be connected. Vary the resistance until the signal at the system output drops 6 db. The resistance at this setting equals the value of Ro' or of Ro + RL. A 120 cycle signal is usually suitable for this purpose. This method should always be used when the equipment is available for the measurement. When the equalizer is to be connected in series in the line, the line must, of course, be opened to obtain the two points for the measurement.
- 3.4 If a LR, HD or a LD, HR curve meets the requirements, AP-1074 and 1075 may now be used to evaluate the resistor and condenser required. Select the appropriate sheet and locate the slant line which is labelled with the full amplitude of the desired curve. Read the factor "A" on the left hand scale opposite the point where the selected slant line crosses the "frequency of the half-way point". Divide this factor by Ro' or Ro+ RL (whichever applies) in Kilohms to obtain the capacity of the condenser in mf. Read the value of K from the selected slant line and multiply it by Ro' or Ro + RL in ohms to obtain the resistor value in ohms. The formulae given on AP-1074 and 1075 will minimize the danger of error in arithmetic.
- 3.5 If the requirements are best met with a cutoff curve, compute the required condenser value from the formulae:


	condenser value fro Single HC -		
	ornere no -		
		$C = \frac{160,000}{f R_0 I}$ mf., where f is the frequency of the 3 db point.	
	Single LC -	$X_{C} = R_{O} + R_{L}$, or	
		$C = \frac{160.000}{f(R_0 + R_L)} m f.$	
		I(NO4U)	
4.	MISCELLANEOUS NOTES		


- 4.] Do not use the above methods within the fredback loop in feedback amplifiers.
- 4.2 <u>Gain reserve</u> must be available to accommodate any equalizer type which raises the response at the low or high end relative to the "roice-volume" range which is about 300 to 800 cps., and the amount of such reserve is equal to the elevation of either extremity relative to this mid-range. The droops and cutoffs introduce no volume loss unless the curve runs through the mid-region.
- 4.3 <u>Distortion</u> may result with LR or HD if a tube works into a low impedance, and in selecting a point for inserting an R-C pair for LR or HD dc not cause a tube to work into an impedance less than its own plate impedance. Any handleap resulting from this prohibition can be removed with little or no gain loss by introducing a resistor in series with the line between the tube and the point of application of the equalizer. For example, assume the requirements call for a l0,000 ohm resistor and a .04 mf condenser based on insertion between grid and ground of V2 of the 86 type amplifier. Since VI will be working into an impedance less than its own value above about 300 cps., this is an undesirable arrangement. However, if a 15,000 ohm resistor is connected in series with the grid, and the equalizer connected between the grid end of the resistor and ground, the tube will work into an impedance well above its own value. Naturally, the equalizer elements must be recalculated for the new value of Ro'.
- 4.4 <u>Overloading</u> will result from LR or HR if, due to loss in the equalizer, the level at the preceding tube is raised above the tube overload point. To determine whether this applies in a particular case, install only the equalizer resistor and increase the system input signal until full output is obtained. Overloading, if any, will be evidenced in the usual way.
- 4.5 The predicted curve will not be obtained if the circuit at the insertion point contains reactance. The design charts AP-1074 and 1075 are based on circuit impedances which are pure resistances. Reactance is encountered in three general forms:
- (a) Blocking (coupling) condenser between stages. These affect only the extreme low end and may usually be ignored.

Issue #1	Issued By	3	Pages	-	Page	2
May 11, 1939	Engineering & Merchandise Department					


TESTING PROCEDURES, GENERAL TWO-TERMINAL, R-C EQUALIZER DESIGN


- (b) A filter or equalizer already installed in the same portion of the circuit. In this case, either find another location for the proposed equalizer or determine experimentally the effect of a trial combination.
- (c) A transformer. If unterminated on the far side, its impedance may be treated as infinite, except perhaps at extreme frequencies. The characteristic of the transformer will change if the impedance from which it works is changed. If this impedance is lowered, the transformer characteristic will rise at 5000-6000 cps. and if the impedance is increased it will fall in the same region. The amount depends upon the transformer. If the transformer is loaded substantially, the reflected impedance may be assumed to apply.
- 4.6 The curves AP-1076 were drawn with the frequency of the half-way point at 1000 ops. to facilitate their interpretation for any frequency by multiplying the frequency scale by a factor: e.g., to shift from 1000 to 300 ops. multiply all abscissae by 0.3. A more convenient method is to use a folded blank sheet having the same log scale as AP-1076, placing this under the curves so that 300 cps. on the blank sheet corresponds to 1000 ops. on the plotted sheet. All points on the curves may then be read off above this adjustable frequency scale.

RESTRICTED DISTRIBUTION ERPI PERSONNEL ONLY EQUIPMENT BULLETIN

Western Western Sound Electric

TRANSMISSION TEST -INTERMEDIATE POINTS

Replaces Addendum #5, "Testing Procedures, General" (4.604)

1.1.The Transmission Test, Intermediate Points, is for use where the usual methods are unsuccessful in bringing a system within limits of gain or response. It facilitates the identification of the particular part or parts which are functioning abnormally.

1.2 References: The drawings associated with Testing Procedures, General, File 4.604.

1.3 Test Equipment and Materials Required. Form ERPL-596 Multi-frequency test reel 1000 cps - 5000 cps test loop

TA-7310 Test Amplifier TA-4145 Output Meter

2. PROCEDURE

1. ABSTRACT

2.1 This test is similar to that of the full-system transmission test except, in this test: (a) two frequencies only will be considered; (b) readings will be taken not merely at the system output, but at any selected point within the system; and (c) Variations from Normal will be derived which apply to that portion of the system between the test film and the Point of Measurement. By comparing the Variations from Normal at consecutive points, the local circuit in which the irregularity exists will be readily discovered.

2.2 The system is set up to provide readings of convenient value (see Sect. 3); the test amplifier is connected at the Point of Measurement (4.); the calibrated test loop is reproduced (5.), and the readings recorded on form ERPI-596. Corrections for the system components <u>prior</u> to the measurement point (6.) are entered on the form and the Variation from Normal derived in the usual way.

3. <u>GAIN SETTINGS</u> - The following settings, together with the test amplifier R-2 values listed on ASP-6244, will normally provide levels easily read on the TA-4145 Output Meter yet below the gain-load point (8 db) of the test amplifier.

3.1 Set the exciter lamp current at approximately -5 db level (3.2 amperes for the 4 amp. lamp) (see ASP-6237).

- 3.2 Set all attenuators on Step "1" (0 loss).
- 3.3 Set the fader for approximately 15 db loss (see ASP-6240).
- 3.4 Set the gain control of 46 type Amplifiers at -15 db.

Note: Normally, with these settings, the 1000 cps reading at the output of the film amplifter will be around 0 db, using the test amplifter 1/2 meg. R-2 resistor. If this level is not obtained the exciter lamp current may be readjusted to approach this value.

4. TEST AMPLIFIER CONNECTIONS

4.1 (Refer to Sect. 3 of E.B."TA-7310 Test Amplifier", Issue #1, File 4.03). Connect the input terminal of the test amplifier to the "Point of Measurement" with as short a lead as possible. (Connect the test amplifier ground connection to the ground terminal of the amplifier under test.) Switch Dl should be in "Test" position and resistor R2 selected as indicated on ASP-6244.

4.2 When measuring at the input of the film amplifier (PEC terminal) a mica condenser (.005 mf to 0.1 mf) must be connected in series with the test amplifier input lead to avoid a do flow through the test amplifier input circuit and the accompanying reduction of PEC polarizing voltage. This condenser will not appreciably change the test amplifier calibration corrections at 1000 cps or above. Do not disconnect the PEC lead at the anode terminal block nor throw D2 switch to "PEC".

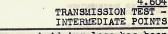
4.3 When measuring at the output of the film amplifier, it will be necessary to check the terminals to find which one is ungrounded. If neither terminal is grounded a temporary ground connection should be made for this test. In the case of the 398 type Control Cabinet, due to the insertion of the balanced attenuation pad between the fader ground connection point and the film amplifier, it will be necessary to disconnect the cabinet, replace it with a 500 ohm resistance load, and make a temporary ground connection at one terminal of the amplifier. Normal connections should be restored for measurements at points beyond the fader.

5. TEST LOOP

5.1 The 1000-8000 cps dual frequency loop may be made from stock now carried by or available to all service inspectors. The recommended loop consists of about 4 feet of 1000 cps and 7 feet of 8000 cps film. The shorter 1000 cps strip serves to identify the frequency. In cases where the 1000 cps and 8000 cps sections reproduce at so near the same level as to render the change in frequency difficult to detect, about 6 inches on one end of the 8000 cps sound track may be blacked out with wax pencil or India ink in order that the V.I. needle will return to zero between sections.

5.2 To calibrate the loop, run it in the machine, follow with a regular test reel run and finally, rerun the loop to detect any changes in the system. Repeat this order if necessary, until consecutive loop runs check. (Space is provided on the form ERPI-596 for repeat runs if they are necessary.)

6. CORRECTIONS - The response corrections and gain values on ASP-6244 are valid for the R2 resistor values listed. Higher resistor values may be used without affecting the


2 PAGES - PAGE 1

Electrical Research Products Inc. OPERATING DEPT. - EQUIPMENT DIV.

April 29, 1936

RESTRICTED DISTRIBUTION

EQUIPMENT BULLETIN

4.604

validity of any of these figures except at those points where a bridging loss has been included as is indicated in the foot-notes on the drawing. If lower R2 values must be used, these may introduce a bridging loss which will require changes in the figures listed.

LDE RANGE

Bridging loss is the amount by which the level existing in the circuit prior to connecting a test amplifier is decreased when the test amplifier is bridged across the circuit. If a different resistor from the one specified is used, the bridging loss should be measured by taking readings at the system output before and after connecting in the test amplifier. The former reading (or response) minus the latter is the bridging loss in gain (or response). This value shall be used as follows to modify the "Gain, 1000 cps" or "Response Correction, 5000 cps" on ASP-6244.

"Gain, 1000 cps"

New gain value = tabulated gain + foot noted bridging loss in gain (if any) - measured bridging loss in gain.

"Response Correction, 8000 cps"

New response correction = tabulated correction - foot noted bridging loss in response (if any) + measured bridging loss in response.

7. MISCELLANEOUS NOTES

7.1 Points to be Measured.

(a) When the system output is not normal in response or gain, it may not always be necessary to check all intermediate points. Tests made at the film amplifier input (PEC terminal) furnish a check on the lens adjustment, the PEC sensitivity, and the grid resistors. A comparison of the "Variation from Normal" obtained from tests made at the film amplifier output and at the PEC terminal will give a check on the film amplifier as a whole from (but not including) the grid resistors to (and including) the fader input. Similarly, a comparison between the main amplifier output and the film amplifier output checks the main amplifier as a whole, plus the fader (except that faults in the input impedance of the fader will affect the film amplifier output reading, and hence, may not be revealed by this test).

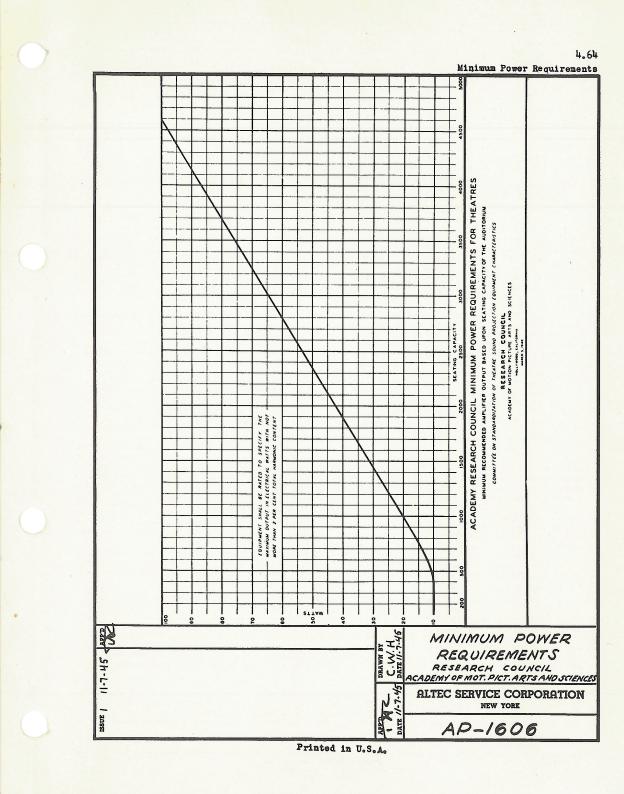
(b) When thus the individual piece of equipment at fault is located, then checks should be made at the internal points of that unit. If there is an appreciable change in the "Variation from Normal" at two successive points, it is evident that there must be some abnormal condition affecting the second point. An analysis of the local circuit at that point will usually indicate the individual item at fault. A fault in any part of the local circuit to which the test amplifier is connected, may affect the readings. This local circuit must be considered as starting with the plate of one tube and ending at the grid of another tube. For instance, if the fault appears at the output of a 49 type Amplifler, but not at the V2 grid, the circuit involves the tube, the output transformer, the fader and the input transformer of the main amplifier. A check of the fader impedance (ASP-6248), and another measurement at the film amplifier output, terminated this time in a known 500 ohm resistor instead of with the fader, would serve to localize the fault. If the fault appears at the grid of the first tube in the main amplifier it may be the attenuators, the fader or the input transformer of the amplifier.

(c) Under normal conditions, the readings obtained at the grid of one tube of a push-pull stage should be duplicated at the other tube. However, a defect in only one half of the winding of the transformer feeding the push-pull stage may result in normal measurements at one tube grid, while measurements made at the amplifier output would be abnormal. Under such conditions a check at the grid of the other tube in the push-pull stage is desirable. There are sufficient blank spaces on the test form (ERPI-596) for such additional points, for points in additional main amplifiers, or for repeated readings. For instance, with the 41-42 amplifier combination, the column headed "V4 Grid" could be used for the grid of V1 tube in the 42 amplifier, while measurements at V2 of the 42 could be listed in one of the blank spaces. Likewise the measurements on a 43 amplifier may be listed in the blank spaces.

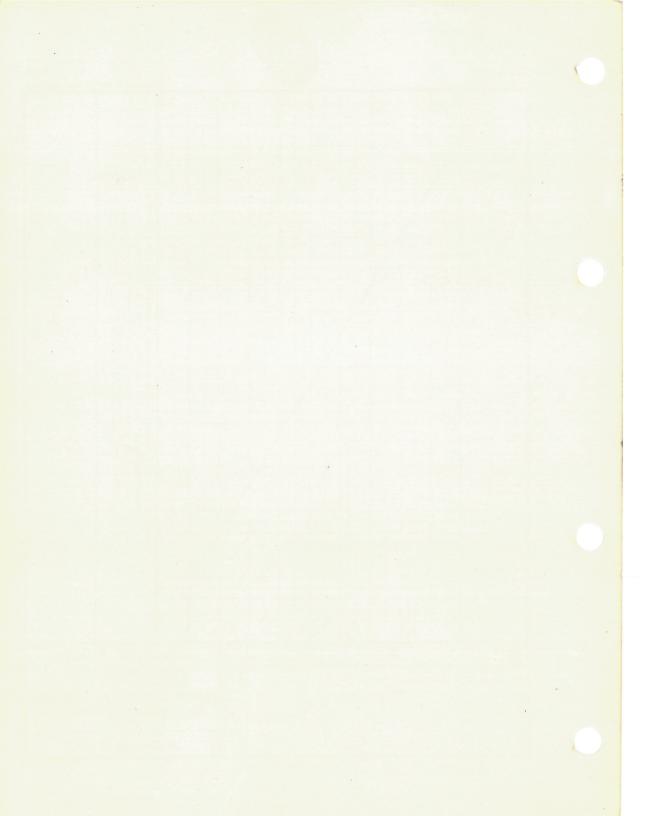
(d) Measurement is not recommended at the primary terminals of transformers. Readings at such points are subject to large variations, even with satisfactory transformers, and are no indication of the true effect of the transformer in the circuit.

7.2 Gain Test.

(a) The gain test may be thought of as separate from the frequency (8000 cps) response test. The only significance to this distinction is that a single frequency loop (1000 cps) may be used when the gain test only is required, with savings of time and inconvenience resulting thereby.


(b) Since the output of the PEC is a function of the polarizing voltage, the PEC voltage should be taken into account when considering the Variation from Normal Gain at the film amplifier input. This output variation is 0.1 to 0.2 db per volt above or below 90 volt. Also, extensive variations in the ac voltage will affect the characteristics of some amplifiers.

8. LIMITS - No definite limits have been set up for the intermediate points. Where two or more points are found to vary from normal, repairs or replacements should be made first at the point where the greater deviation is noted. It may then be found that the system is within acceptable limits and that no further changes are necessary.


2 PAGES - PAGE 2

Electrical Research Products Inc. OPERATING DEPT. - EQUIPMENT DIV. PRINTED IN U.S.A.

ISSUE 1 April 29, 1936

.

File - 4.64 9-26-36

THE DESIGN OF	ATTE	NUATION	NETWORK	
	DB		TABLE NO.	1
R1 R2	2507	K3	ĸą	K ₅
$z_1 \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1 2 3 4 5	4.34 2.21 1.51 1.16 .965	4.34 2.15 1.43 1.05 .82	1.013 1.05 1.12 1.23 1.37
H Type Pad	6 7 8 9 10	.835 .725 .690 .645 .610	•67 •525 •476 •406 •352	1.56 1.79 2.10 2.50 3.03
Z1 S R3 S Z2 T Type Pad	12 14 15 16 18	565 540 532 525 515	.269 .208 .184 .163 .128	4.45 6.76 8.35 10.43 16.74
$R_{1} = (K_{3} \ Z_{1}) = (K_{4} \ \sqrt{Z_{1}Z_{2}})$ $R_{2} = (K_{3} \ Z_{2}) = (K_{4} \ \sqrt{Z_{1}Z_{2}})$ $R_{3} = 2 \ K_{4} \ \sqrt{Z_{1}Z_{2}}$	20 25 30 35 40	.510 .502 .500 .500 .500	.101 .056 .0318 .0178 .0100	25.40 79.80 247.00 784.00 2401.00
	45 50	。500 。500	.00565 .00320	7921.00 24964.00

The ratio $(2_1/2_2 \text{ or } 2_2/2_1)$ of the larger terminal impedance of the pad to the smaller impedance cannot be greater than a quantity (K5 in Table No. 1) which depends upon the loss. The minimum matching loss will occur at the point where this ratio and K_5 are equal in value.

EXAMPLE:

Design a 10 db pad working between a 400 ohm output and a 600 ohm input.

 $Z_2/Z_1 = 600/400 = 1.5$ The combination is possible as K5 for 10 db loss is 3.03 which is greater than Z_2/Z_1 . (Incidentally, a minimum loss pad for this ratio would be where K5 is equal to 1.5. Since 1.5 is not shown we will have to use the next larger number, or 1.56. The pad should be designed on the basis of 6 db loss.)

Then from Table No. 1 we see that for a loss of 10 db,

 $K_3 = 0.610$ $K_4 = 0.352$ Substituting these and the given values of Z1 and Z2 we have,

 $R_1 = (.610 \times 400) - (.352 \times 490) = 71.5 \text{ ohms}$ $R_2 = (.610 \times 600) - (.352 \times 490) = 193.5 \text{ ohms}$ $R_3 = 2 \times .352 \times 490 = 345 \text{ ohms}.$

In practice we would make,

 $R_1 = 70$ ohms $R_2 = 200$ ohms $R_3 = 350$ ohms.

(DON'T FORGET TO MULTIPLY R1 AND R2 BY TWO WHEN USED IN A "T" PAD. SEE SKETCH.)

NOTE:

The reader who is interested in the methematical expressions will find a complete treatment of the subject in K.S. Johnson's "Transmission Circuits for Telephone Communication".