# Alloy Handbook



WILBUR B. DRIVER CO.
NEWARK - NEW JERSEY

#### The

# ALLOY HANDBOOK OF ELECTRICAL RESISTANCE and

Electronic, Chemcial, and Mechanical Applications was published by:

The Wilbur B. Driver Co.

of

Newark, New Jersey

This was scanned by the Internet personality, Opcom. The content and all rights belongs to the owner and its heirs.

Despite the fact that resistance is futile, Opcom hopes that this most useful volume of special knowledge, found languishing in a used book store, will help hobbyists when they need to use, what is termed in the vernacular, "resistance wire".

To save ink when printing, the next page begins with an inverted-color version of the finely textured black and silver front cover, and continues thereafter with the rest of the volume.

The volume was scanned at 200DPI in color. The fine pictorial section begins on page 109 and those images were scanned at 600DPI gray scale to preserve the halftones for your enjoyment.

This document is free on the Internet and may not be sold nor bundled with any other information or media or product or access privilege that is sold or leased to the receiver of the document. It is F R E E. If you paid anyone but the rights-owner for the content of this document, then you have been cheated and should take your money back.

# Olloy Handbook



# WILBUR B. DRIVER CO.

# Alloy Handbook

of

# ELECTRICAL RESISTANCE

and

Electronic, Chemical and Mechanical Applications



# WILBUR B. DRIVER COMPANY

Newark, New Jersey

#### **BRANCH OFFICES**

\*Chicago Boston

\*San Francisco Denver \*Cleveland \*Seattle Louisville \*Philadelphia Minneapolis

\*Los Angeles

\*Toronto, Canada

#### **EUROPEAN WORKS**

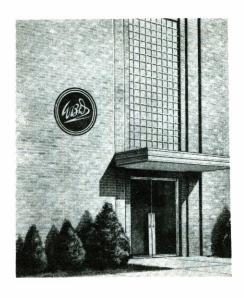
Gilby Brunton, Ltd., Musselburgh, Scotland
Gilby Fodor S. A. Vanzetti Gilby
Paris, France Milan, Italy

#### INTRODUCTION

The aim of this Alloy Handbook is to make available in compact form a complete story of Wilbur B. Driver Company alloys, their properties and the forms in which they are available. In the back of this Handbook are pictures showing our plants and facilities. Our technical staff is constantly working to improve quality of alloys and to develop new ones. We welcome an opportunity to work with you on any problems you may have pertaining to alloy uses.

# CONTENTS

| General Information on Metals and Alloys                             | 6        |
|----------------------------------------------------------------------|----------|
| TOPHET A                                                             |          |
| Description and Temperature Resistance Curves                        | 8        |
| Resistance Table and List Price of Wire                              | 9        |
| Current Temperature Characteristics, Straight Wire                   | 10       |
| Current Temperature Characteristics, Coiled Wire                     | 11       |
| Resistance Table of Ribbon                                           | 12       |
| Feet per Pound of Ribbon                                             | 13       |
| List Price per Pound of Ribbon                                       | 14       |
| Weight of Ribbon in Pounds per 1000 Feet                             | 15       |
| Current Carrying Capacity of Ribbon                                  | 16       |
| Cold Rolled Furnace Strip, Resistance Table                          | 17       |
| Cold Rolled Furnace Strip, Feet per Pound                            | 18       |
| Cold Rolled Furnace Strip, Surface Area Square Inches per Lineal Ft. |          |
| TOPHET C                                                             | 20       |
| Description and Temperature Resistance Curves                        | 20       |
| Resistance Table and List Price of Wire                              | 21       |
| Current Temperature Characteristics, Straight Wire                   | 44       |
| Current Temperature Characteristics, Coiled Wire                     | 20       |
| Resistance Table of Ribbon                                           | 25       |
| Feet per Pound of RibbonList Price per Pound of Ribbon               | 26       |
| Description and Temperature Resistance Curve                         | 28<br>29 |
| EVANOHM                                                              |          |
| Description and Temperature Resistance Curve                         | 31       |
| Resistance Table and List Price of Wire                              | 32       |
| MANGANIN                                                             |          |
| Description and Temperature Resistance Curve                         | 33       |
| Resistance Table and List Price of Wire                              | 34       |
| Manganin Shunt Strip Resistance Table                                | 35       |
| CUPRON                                                               |          |
| Description and Temperature Resistance Curve                         | 36       |
| Resistance Table and List Price of Wire                              | 37       |
| Current Temperature Characteristics of Straight Wire                 | 38       |
| Resistance Table of Ribbon                                           | ა9       |
| Feet per Pound of Ribbon                                             | 41       |
| List Price per Pound of Ribbon                                       | 41       |


# CONTENTS (CONTINUED)

| OW RESISTANCE ALLOYS                                                                                |     |
|-----------------------------------------------------------------------------------------------------|-----|
| Description and Temperature Resistance Curves                                                       | 42  |
| No. 30 Alloy Resistance and List Price of Wire                                                      | 43  |
| No. 60 Alloy Resistance Table and List Price of Wire                                                | 44  |
| No. 90 Alloy Resistance Table and List Price of Wire                                                | 45  |
| No. 180 Alloy Resistance Table and List Price of Wire                                               | 41  |
| BALCO                                                                                               |     |
| Description and Temperature Resistance Curves                                                       | 47  |
| Resistance Table and List Price of Wire                                                             | 48  |
| PURE NICKEL                                                                                         |     |
| Description                                                                                         | 4   |
| Resistance Table and List Price of Wire                                                             | 5   |
| Premium Potentiometer Wire                                                                          | 5   |
| INSULATED WIRE, TOPHET C                                                                            |     |
| Description.                                                                                        | 5   |
| Enameled Wire, Resistance, Diameter, Feet per Pound, Ohms per Pound,<br>Turns per Inch              | 5   |
| SINGLE SILK COVERED Wire, Resistance, Diameter, Feet per Pound,<br>Ohms per Pound, Turns per Inch   | 5   |
| Double Silk Covered Wire, Resistance, Diameter, Feet per Pound, Ohms per Pound, Turns per Inch      |     |
| Single Silk Enameled Wire, Resistance, Diameter, Feet per Pound,<br>Ohms per Pound, Turns per Inch  | Ċ   |
| Double Silk Enameled Wire, Resistance, Diameter, Feet per Pound, Ohms per Pound, Turns per Inch     | Ü   |
| Single Cotton Covered Wire, Resistance, Diameter, Feet per Pound,<br>Ohms per Pound, Turns per Inch | ·   |
| Double Cotton Covered Wire, Resistance, Diameter, Feet per Pound,<br>Ohms per Pound, Turns per Inch |     |
| SINGLE NYLON COVERED Wire, Resistance, Diameter, Feet per Pound, Ohms per Pound, Turns per Inch     | . ( |
| Double Nylon Covered Wire, Resistance, Diameter, Feet per Pound, Ohms per Pound, Turns per Inch     | . ( |
| SINGLE GLASS COVERED Wire, Resistance, Diameter, Feet per Pound,<br>Ohms per Pound, Turns per Inch  | . ( |
| Double Glass Covered Wire, Resistance, Diameter, Feet per Pound, Ohms per Pound, Turns per Inch     | . ( |
| ELECTRONIC METALS AND ALLOYS                                                                        |     |
| Composition and Physical Properties.  Grid Wire, Milligramic Weights                                |     |
| RODAR                                                                                               |     |
| Description, Chemical Composition and Thermal Expansion Curve                                       | -   |
| MECHANICAL ALLOY SECTION                                                                            |     |
| Monel                                                                                               |     |
| Nilstain, Description.                                                                              |     |
| NUCTAIN SDRING WIRE                                                                                 |     |

# $CONTENTS \ ({\tt CONTINUED})$

#### MECHANICAL ALLOY SECTION, Continued

| Nilstain, Typical Properties                                 | 72  |
|--------------------------------------------------------------|-----|
| NILSTAIN, Type 304; Lbs. Per Foot and Feet Per Lb. of Wire   | 73  |
| NILSTAIN C-20, Description                                   | 74  |
| NILSTAIN C-20, Physical Constants                            | 76  |
| Beraloy, Description                                         | 77  |
| Beraloy, Typical Properties                                  | 78  |
| Beraloy, Weight of Wire                                      | 79  |
| Beraloy, Weight of Strip                                     | 80  |
| Cobenium, Description                                        | 81  |
| COBENIUM, Typical Properties                                 | 82  |
| Heating Element Design                                       | 84  |
| Table for Cold Resistance and Minimum Recommended Wire Sizes | 89  |
| Ohms per Inch of Close-Wound Coils, Tophet A.                | 90  |
| Ohms per Inch of Close-Wound Coils, Tophet C                 | 91  |
| SURFACE AREA OF ROUND WIRE, Square Inch per Lineal Foot      | 92  |
| SURFACE AREA OF RIBBON, Square Inch per Lineal Foot          | 93  |
| BARE COPPER WIRE TABLE, Weights and Resistances              | 94  |
| MILLIMETER EQUIVALENTS IN INCHES                             | 95  |
| Temperature Conversion Table                                 | 96  |
| DECIMALS OF INCH FOR EACH 64TH WITH MILLIMETER EQUIVALENTS   | 98  |
| Custom Alloys                                                | 99  |
| CHANGES IN ELECTRICAL UNITS.                                 | 99  |
| MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS.                 | 100 |
| A.S.T.M. Standards                                           |     |
| Definitions and Glossary                                     | 102 |
| Conversion Factors and Nomenclature                          | 105 |
| STANDARD RESISTANCE TOLERANCE FOR WIRE AND RIBBON            | 107 |
| Weights of Coils and Spools                                  | 108 |
| Promortal Secution                                           | 109 |

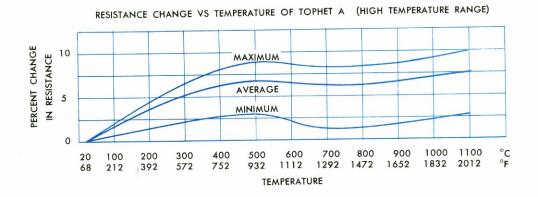


# GENERAL INFORMATION ON

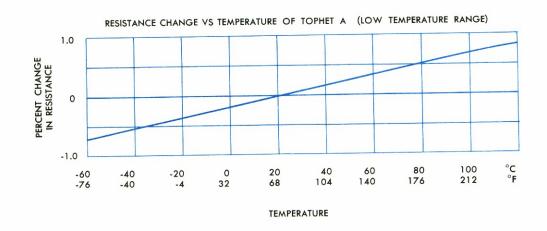
| _                    |                           |             | istivity<br>C (68°F) | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of Linear | Tensile Strer<br>Pounds Pe |           |
|----------------------|---------------------------|-------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-----------|
| Material             | Nominal<br>Analysis       | Ohms<br>CMF | Microhm<br>cm.       | Temperature Coefficient of Resistance com.   Coefficient of Resistance com.   Coefficient of Resistance com.   Coefficient of Resistance com.   Coefficient com. | Min.      |                            |           |
| Tophet A®            | 80 Ni 20 Cr               | 650         | 108                  | .0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000132  | 200,000                    | 100,000   |
| Tophet C®            | 61 Ni 15 Cr bal. Fe       | 675         | 112                  | .00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0000137  | 175,000                    | 95,000    |
| Evanohm®             | 75 Ni 20 Cr 2.5 Al 2.5 Cu | 800         | 134                  | ±.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000014   |                            |           |
| Cupron®              | 55 Cu 45 Ni               | 294         | 48.4                 | ±.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0000149  | 135,000                    | 60,000    |
| Manganin             | 13 Mn bal Cu              | 290         | 48.2                 | ±.000015†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0000187  | 90,000                     | 40,000    |
| Balco <sup>®</sup>   | 70 Ni 30 Fe               | 120         | 19.9                 | . 0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000015   | 150,000                    | 70,000    |
| #30 Alloy            | 2 Ni bal Cu               | 30          | 4.98                 | .0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000165  | 60,000                     | 30,000    |
| #60 Alloy            | 6 Ni bal Cu               | 60          | 9.95                 | .0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000163  | 70,000                     | 35,000    |
| #90 Alloy            | 12 Ni bal Cu              | 90          | 14.9                 | .0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000161  | 75,000                     | 35,000    |
| #180 Alloy           | 22 Ni bal Cu              | 180         | 29.8                 | .00018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0000159  | 100,000                    | 50,000    |
| Modified Hilo®       | 80 Ni 20 Co               | 150         | 24.9                 | .00225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000011   | 150,000                    | 75,000    |
| Cobanic®             | 55 Ni 45 Co               | 75          | 12.49                | .0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000011   | 150,000                    | 75,000    |
| Sylvaloy®            | 97 Ni 3 Si                | 160         | 26.4                 | . 00232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 140,000                    | 55,000    |
| Mangrid®             | 93 Ni 4½-5 Mn             | 120         | 20                   | .0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000015   | 135,000                    | 60,000    |
| Rodar®               | 29 Ni 17 Co bal Fe        | 294         | 48.4                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See Curve | 150,000                    | 65,000    |
| Monel                | 70 Ni 30 Cu               | 290         | 48.2                 | .0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000125  | 150,000                    | 70,000    |
| ‡Nilstain® Type #304 | 18 Cr 8 Ni bal Fe         | 438         | 73                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .000017   | 300,000                    | 100,000   |
| Beraloy®             | 1.9 Be .5 Co bal Cu       |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | See Data o                 | n Page 78 |
| Cobenium®            | 40 Co 20 Cr 15 Ni 7 Mo    | 600         | 99.6                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | See Data o                 | n Page 82 |
| Pure Metals          | Symbol                    | Speci       | fic Res.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                            |           |
| "A" Nickel           | 99 Ni                     | 60          | 10                   | .0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000013   | 135,000                    | 60,000    |
| Iron                 | Fe                        | 61.10       | 10.13                | .0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000117  | 120,000                    | 50,000    |
| Copper               | Cu                        | 10.73       | 1.73                 | . 0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0000166  | 60,000                     | 35,000    |
| Silver               | Ag                        | 9.79        | 1.63                 | .0038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000189  | 42,000                     |           |
| Zinc                 | Zn                        | 35.58       | 5.916                | . 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000292  | 30,000                     | 22,000    |
| Aluminum             | Al                        | 16.10       | 2.67                 | .0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000231  | 45,000                     | 35,000    |
| Titaniun             | Ti                        | 330.0       | 55.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0000085  | 90,000                     | 75,000    |
| Molybdenum           | Mo                        | 34.30       | 5.70                 | .0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000005   | 313,000                    | 100,000   |
| Tungsten             | W                         | 33.00       | 5.48                 | .0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000004   | 940,000                    | 490,000   |
| Gold                 | Au                        | 14.60       | 2.42                 | .0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0000142  | 20,000                     |           |
| Platinum             | Pt                        | 63.80       | 10.60                | .003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0000088  | 50,000                     |           |
| Zirconium            | Zr                        |             | 41.0(0°C             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000005   | 100,000                    | 80,000    |

 $<sup>\</sup>ddagger For complete Nilstain data on all types supplied see page <math display="inline">69$ 

<sup>†</sup>Temperature coefficient between 15 and 35°C.


# METALS AND ALLOYS

| Specific<br>Gravity | Pounds Per<br>Cubic Inch | Magnetic<br>Attraction | Approximate<br>Melting Point<br>in Deg. C. | Recommended<br>Operating<br>Temperature<br>in Air Deg. F. | Material         |
|---------------------|--------------------------|------------------------|--------------------------------------------|-----------------------------------------------------------|------------------|
| 8.412               | .3039                    | None                   | 1400                                       | 2100                                                      | Tophet A         |
| 8.247               | . 2979                   | Faint                  | 1350                                       | 1800                                                      | Tophet C         |
| 8.10                | . 293                    | None                   | 1350                                       | 600                                                       | Evanohm          |
| 8.90                | .321                     | None                   | 1210                                       | 1000                                                      | Cupron           |
| 8.192               | . 296                    | None                   | 1020                                       | 130                                                       | Manganin         |
| 8.46                | .305                     | Strong                 | 1425                                       | 1100                                                      | Balco            |
| 8.90                | .321                     | None                   | 1100                                       | 600                                                       | 30 Alloy         |
| 8.90                | .321                     | None                   | 1100                                       | 600                                                       | 60 Alloy         |
| 8.90                | .321                     | None                   | 1100                                       | 800                                                       | 90 Alloy         |
| 8.90                | .321                     | None                   | 1100                                       | 1000                                                      | 180 Alloy        |
| 8.71                | .318                     | Strong                 | 1450                                       | Filament Alloy                                            | Modified Hilo    |
| 8.84                | .319                     | Strong                 | 1450                                       | Filament Alloy                                            | Cobanic          |
| 8.61                | .311                     | Strong                 | 1425                                       | Filament Alloy                                            | Sylvaloy         |
| 8.75                | .316                     | Strong                 | 1435                                       | 1100                                                      | Mangrid          |
| 8.36                | .302                     | Strong                 | 1450                                       |                                                           | Rodar            |
| 8.90                | .321                     | Faint                  | 1350                                       | 1000                                                      | Monel            |
| 7.93                | . 286                    | None (Annealed)        | 1399                                       |                                                           | Nilstain Type 30 |
| 8.19                | . 2965                   | None                   |                                            |                                                           | Beraloy          |
| 8.30                | .300                     | None                   |                                            | 600                                                       | Cobenium         |
|                     |                          |                        |                                            |                                                           | Pure Metals      |
| 8.90                | .321                     | Strong                 | 1450                                       | 1100                                                      | "A" Nickel       |
| 7.86                | .284                     | Strong                 | 1535                                       | 600                                                       | Iron             |
| 8.90                | .321                     | None                   | 1083                                       | 600                                                       | Copper           |
| 10.50               | .3793                    | None                   | 960                                        | 1200                                                      | Silver           |
| 7.14                | . 2579                   | None                   | 419                                        |                                                           | Zinc             |
| 2.70                | .0975                    | None                   | 660                                        | 400                                                       | Aluminum         |
| 4.50                | .1628                    | None                   | 1660                                       | 500                                                       | Titanium         |
| 10.20               | .3685                    | None                   | 2625                                       | 400                                                       | Molybdenum       |
| 19.30               | .6973                    | None                   | 3410                                       | 300                                                       | Tungsten         |
| 19.30               | . 6973                   | None                   | 1063                                       | 900                                                       | Gold             |
| 21.45               | .7750                    | None                   | 1773                                       | 2200                                                      | Platinum         |
| 6.53                | .236                     | None                   | 1750                                       | _                                                         | Zirconium        |


TOPHET A is an alloy of  $80\,\%$  Nickel and  $20\,\%$  Chromium. It is essentially iron free.

TOPHET A is recommended for temperatures up to 2100°F (1149°C). It has wide acceptance by the manufacturers of electric ranges and electric furnaces, radiant heaters, toasters and other appliances where the highest quality in performance is demanded. It is widely used in chemical applications. It resists most acids except hydrochloric and resists most alkaline solutions.

It is supplied in bar, rod, wire, ribbon and strip and also insulated in wire form with enamel, nylon, silk, cotton and glass.



TOPHET A, being non-magnetic, and having a resistivity of 650 ohms per circular mil foot, is also used in fine wire sizes for wire wound resistors, and since some of these resistors operate in sub-zero temperatures, the chart below shows the resistance change with temperature ranging from minus 60° to plus 100°C.



TOPHET A®
Resistance Weight and Price of Wire

Resistivity 650 Ohms Per Circular Mil Foot at 20°C. (68°F.) Specific Gravity 8.412 Wt. Per Cubic Inch .3039 Lbs.

| Easter         | 1 000 | 1.017 | 1.035 | 1.052 | 1.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.068                        | 1.066                          | 1.063 | 1.062 | 1.067 | 1.071 | 1.013 |
|----------------|-------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|-------|-------|-------|-------|-------|
| Temperature °F | 68    | 212   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |       |       | 1.067 | 1 071 | 1.075 |
|                | 00    | 010   | 392   | 572   | 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 932                          | 1112                           | 1292  | 1472  | 1652  | 1832  | 2012  |
| Temperature °C | 20    | 100   | 200   | 300   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                          | 000                            | 100   |       |       |       | 2012  |
| 2.00           | 20    | 100   | 200   | 300   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                          | 600                            | 700   | 800   | 900   | 1000  | 1100  |
|                |       |       |       |       | and the last of th | THE R. P. LEWIS CO., LANSING | ACTOR DESIGNATION AND ADDRESS. | -     |       |       |       | 4400  |

\*These figures will vary slightly with various sizes of wire due to rate of cooling.

| B & S | Dia. in<br>Inches | Ohms Per Ft.<br>at 20°C. (68°F.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ohms Per Pound<br>Bare Wire                                                                                   | Feet Per Pound<br>Bare Wire | Pounds Per<br>M Feet | List Price<br>Per Pound<br>Bare Wire |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|--------------------------------------|
|       |                   | The state of the s | .008030                                                                                                       | 2.077                       | 481.5                | \$.3.40                              |
| 000   | .410              | .003867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .01279                                                                                                        | 2.621                       | 381.6                | 3.40                                 |
| 00    | .365              | .004879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .02034                                                                                                        | 3.306                       | 302.5                | 3.40                                 |
| 0     | .325              | .006154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .03254                                                                                                        | 4.181                       | 239.2                | 3.40                                 |
| 1     | .289              | .007782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .05121                                                                                                        | 5.244                       | 190.7                | 3.40                                 |
| 2     | .258              | . 009765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               | 6.658                       | 150.2                | 3.40                                 |
| 3     | .229              | . 01239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .08249                                                                                                        | 8.389                       | 119.2                | 3.40                                 |
| 4     | .204              | .01562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1310                                                                                                         |                             | 94.87                | 3.40                                 |
| 5     | .182              | .01962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 2068                                                                                                        | 10.54                       | 75.17                | 3.40                                 |
| 6     | .162              | . 02476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .3293                                                                                                         | 13.30                       | 59.39                | 3.40                                 |
| 7     | .144              | . 03135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .5279                                                                                                         | 16.84                       |                      | 3.40                                 |
| 8     | .128              | .03967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .8454                                                                                                         | 21.31                       | 46.93                |                                      |
| 9     | .114              | .05001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.344                                                                                                         | 26.87                       | 37.22                | 3.44                                 |
| 10    | .102              | .06248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.097                                                                                                         | 33.56                       | 29.80                | 3.50                                 |
| 11    | .091              | .07849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.309                                                                                                         | 42.16                       | 23.72                | 3.54                                 |
| 12    | .081              | .09907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.273                                                                                                         | 53.22                       | 18.79                | 3.62                                 |
|       | .072              | .1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.451                                                                                                         | 67.34                       | 14.85                | 3.68                                 |
| 13    | .072              | .1587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.54                                                                                                         | 85.25                       | 11.73                | 3.74                                 |
| 14    | .057              | .2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.50                                                                                                         | 107.5                       | 9.306                | 3.82                                 |
| 15    |                   | .2499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.54                                                                                                         | 134.2                       | 7.450                | 3.88                                 |
| 16    | .051              | .3209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.32                                                                                                         | 172.4                       | 5.800                | 3.96                                 |
| 17    | .045              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | 218.2                       | 4.583                | 4.08                                 |
| 18    | .040              | .4062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.63                                                                                                         | 269.4                       | 3.712                | 4.24                                 |
| 19    | .036              | .5015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.1                                                                                                         | 340.9                       | 2.933                | 4.42                                 |
| 20    | .032              | . 6347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 216.4                                                                                                         | 429.9                       | 2.326                | 4.66                                 |
| 21    | .0285             | .8002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 344.0                                                                                                         |                             | 1.833                | 5.00                                 |
| 22    | .0253             | 1.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 554.9                                                                                                         | 545.6                       |                      | 5.34                                 |
| 23    | .0226             | 1.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 869.4                                                                                                         | 683.5                       | 1.463                | 5.78                                 |
| 24    | .0201             | 1.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,391 .                                                                                                       | 864.3                       | 1.157                | 6.20                                 |
| 25    | .0179             | 2.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,212.                                                                                                        | 1,090.                      | .9177                | 6.62                                 |
| 26    | .0159             | 2.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,551.                                                                                                        | 1,381.                      | . 7241               | 7.04                                 |
| 27    | .0142             | 3.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,591.                                                                                                        | 1,732.                      | .5775                |                                      |
| 28    | .0126             | 4.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,994.                                                                                                        | 2,199.                      | . 4547               | 7.48                                 |
| 29    | .0113             | 5.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13,920.                                                                                                       | 2,734.                      | .3657                | 7.90                                 |
| 30    | .010              | 6.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22,698.                                                                                                       | 3,492.                      | . 2864               | 8.32                                 |
| 31    | .0089             | 8.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36,160.                                                                                                       | 4,407.                      | . 2269               | 8.74                                 |
| 32    | .008              | 10.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55,430.                                                                                                       | 5,456.                      | . 1833               | 9.18                                 |
|       | .0071             | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89,330.                                                                                                       | 6,925.                      | . 1444               | 9.86                                 |
| 33    |                   | 16.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 144,000                                                                                                       | 8,795.                      | .1137                | 10.70                                |
| 34    | .0063             | 20.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 230,600                                                                                                       | 11,130.                     | . 08982              | 11.90                                |
| 35    | .0056             | 26.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 363,200                                                                                                       | 13,970.                     | .07160               | 13.42                                |
| 36    | .005<br>.0045     | 32.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 553,200.                                                                                                      | 17,240.                     | .05800               | 15.30                                |
| 37    |                   | And in case of the last of the | 886,300.                                                                                                      | 21,820.                     | .04583               | 17.50                                |
| 38    | .004              | 40.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 28,500.                     | .03509               | 20.40                                |
| 39    | .0035             | 53.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,512,000.<br>2,458,000.                                                                                      | 36,340.                     | .02752               | 23.80                                |
| 40    | .0031             | 67.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,458,000 · 3,970,000 ·                                                                                       | 46,170.                     | .02166               | 27.20                                |
|       | .00275            | 85.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,810,000.                                                                                                    | 55,870.                     | .01790               | 32.30                                |
|       | .0025             | 104.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE R. P. LEWIS CO., LANSING, MICH. 400, LANSING, SANSAN, PRINCIPLES, SANSAN, SANSAN, SANSAN, SANSAN, SANSAN, | 68,970.                     | .01450               | 40.80                                |
|       | .00225            | 128.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,863,000                                                                                                     | 87,260.                     | .01146               | 51.00                                |
|       | .002              | 162.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14,180,000                                                                                                    | 114,000.                    | .008772              | 64.60                                |
|       | .00175            | 212.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24,210,000                                                                                                    | 155,200                     | .006444              | 81.60                                |
|       | .0015             | 288.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44,840,000.                                                                                                   | 178,100                     | .005614              | 102.00                               |
|       | .0014             | 331.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59,058,000.                                                                                                   |                             |                      | 132.60                               |
|       | .0013             | 384.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79,230,000                                                                                                    | 206,600.                    | .004840              | 163.20                               |
|       | .0012             | 451.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109,500,000.                                                                                                  | 242,500                     | .004124              | 204.00                               |
|       | .0011             | 537.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 155,000,000.                                                                                                  | 288,500.                    | .003466              |                                      |
|       | .001              | 650.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 227,000,000.                                                                                                  | 349,200.                    | .002864              |                                      |
|       | .0009             | 802.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 345,751,022.                                                                                                  | 431,111.                    | .002319              |                                      |
|       | .0008             | 1,016.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 554,355,000.                                                                                                  | 545,625                     | .001832              |                                      |
|       | .0007             | 1,327.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 945,690,531.                                                                                                  | 712,653                     | .001403              |                                      |

#### Current Temperature Characteristics of Straight Wire

Chart Shows Amperes Necessary to Raise to a Given Temperature, a Straight Wire in Air.

| B & S | Dia. in<br>Inches | 200<br>392 | 300<br>572 | 400<br>752 | 500<br>932 | 600<br>1112 | 700<br>1292 | 800<br>1472 | 900<br>1652 | 1000<br>1832 | 1100°C.<br>2012°F. |
|-------|-------------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|--------------|--------------------|
| 1     | .289              | 76.0       | 103.0      | 131.0      | 161.0      | 198.0       | 238.0       | 285.0       | 335.0       | 384.0        | 435.0              |
| 2     | .258              | 63.0       | 87.0       | 110.0      | 135.0      | 166.0       | 200.0       | 240.0       | 281.0       | 325.0        | 367.0              |
| 3     | .229              | 52.0       | 73.0       | 92.0       | 115.0      | 139.0       | 169.0       | 202.0       | 238.0       | 270.0        | 307.0              |
| 4     | .204              | 44.0       | 61.7       | 77.0       | 96.0       | 117.6       | 142.0       | 166.0       | 198.0       | 228.0        | 256.0              |
| 5     | .182              | 37.4       | 51.8       | 65.5       | 81.3       | 98.0        | 118.0       | 141.0       | 166.5       | 190.0        | 218.0              |
| 6     | .162              | 31.0       | 42.7       | 54.5       | 67.5       | 81.5        | 99.7        | 118.0       | 139.4       | 160.0        | 184.0              |
| 7     | .144              | 26.0       | 36.3       | 46.0       | 57.0       | 69.0        | 83.5        | 99.0        | 116.0       | 135.0        | 152.0              |
| 8     | .128              | 22.0       | 30.5       | 38.7       | 46.5       | 58.5        | 71.0        | 82.5        | 96.5        | 113.0        | 127.5              |
| 9     | .114              | 18.7       | 26.0       | 33.0       | 40.0       | 49.7        | 59.7        | 71.0        | 82.1        | 95.7         | 108.0              |
| 10    | .102              | 16.3       | 22.1       | 28.2       | 34.0       | 41.5        | 50.0        | 59.5        | 70.1        | 81.5         | 91.5               |
| 11    | .091              | 13.9       | 18.5       | 23.2       | 28.5       | 34.0        | 42.6        | 50.2        | 59.6        | 68.4         | 77.5               |
| 12    | .081              | 12.1       | 15.8       | 19.8       | 24.2       | 29.6        | 34.8        | 42.7        | 49.5        | 57.5         | 66.0               |
| 13    | .072              | 10.3       | 13.5       | 17.0       | 20.6       | 24.0        | 29.6        | 34.8        | 41.0        | 45.5         | 53.0               |
| 14    | .064              | 9.1        | 11.7       | 14.8       | 17.6       | 21.0        | 25.2        | 29.7        | 34.8        | 38.0         | 45.0               |
| 15    | .057              | 8.0        | 10.0       | 12.8       | 15.1       | 18.3        | 21.5        | 25.3        | 29.6        | 34.3         | 38.2               |
| 16    | .051              | 7.00       | 8.80       | 11.00      | 12.90      | 15.60       | 18.30       | 21.6        | 25.0        | 29.2         | 33.8               |
| 17    | .045              | 6.10       | 7.58       | 9.37       | 11.20      | 13.30       | 15.60       | 18.4        | 21.5        | 24.9         | 27.7               |
| 18    | .040              | 5.25       | 6.46       | 7.99       | 9.50       | 11.30       | 13.30       | 15.7        | 18.3        | 21.2         | 23.6               |
| 19    | .036              | 4.50       | 5.51       | 6.80       | 8.10       | 9.63        | 11.38       | 13.4        | 15.6        | 18.1         | 20.4               |
| 20    | .032              | 3.85       | 4.70       | 5.80       | 6.90       | 8.20        | 9.70        | 11.4        | 13.3        | 15.4         | 17.4               |
| 21    | .0285             | 3.30       | 4.05       | 4.95       | 5.90       | 7.10        | 8.30        | 9.85        | 11.20       | 13.10        | 14.80              |
| 22    | .0253             | 2.85       | 3.55       | 4.25       | 5.10       | 6.00        | 7.30        | 8.40        | 9.60        | 11.15        | 12.60              |
| 23    | .0226             | 2.45       | 3.10       | 3.70       | 4.45       | 5.10        | 6.30        | 7.30        | 8.45        | 9.70         | 10.90              |
| 24    | .0201             | 2.16       | 2.75       | 3.40       | 3.90       | 4.60        | 5.40        | 6.35        | 7.25        | 8.30         | 9.40               |
| 25    | .0179             | 1.85       | 2.35       | 2.90       | 3.40       | 4.00        | 4.65        | 5.45        | 6.30        | 7.15         | 8.05               |
| 26    | .0159             | 1.61       | 2.00       | 2.48       | 2.90       | 3.40        | 3.95        | 4.65        | 5.40        | 6.10         | 6.90               |
| 27    | .0142             | 1.39       | 1.75       | 2.13       | 2.55       | 2.95        | 3.52        | 4.05        | 4.70        | 5.30         | 5.95               |
| 28    | .0126             | 1.21       | 1.53       | 1.84       | 2.18       | 2.60        | 3.04        | 3.55        | 4.06        | 4.55         | 5.10               |
| 29    | .0113             | 1.08       | 1.35       | 1.62       | 1.95       | 2.30        | 2.65        | 3.12        | 3.45        | 3.99         | 4.45               |
| 30    | .010              | .90        | 1.15       | 1.40       | 1.67       | 1.97        | 2.28        | 2.67        | 2.96        | 3.42         | 3.80               |
| 31    | .0089             | .77        | .99        | 1.22       | 1.40       | 1.68        | 1.97        | 2.28        | 2.55        | 2.92         | 3.24               |
| 32    | .008              | . 66       | .86        | 1.05       | 1.22       | 1.42        | 1.69        | 1.95        | 2.22        | 2.51         | 2.77               |
| 33    | .0071             | . 58       | . 73       | .92        | 1.05       | 1.22        | 1.42        | 1.66        | 1.85        | 2.14         | 2.37               |
| 34    | .0063             | . 50       | . 63       | .79        | .92        | 1.06        | 1.23        | 1.42        | 1.60        | 1.83         | 2.02               |
| 35    | .0056             | . 43       | .54        | .68        | .80        | .92         | 1.07        | 1.25        | 1.37        | 1.57         | 1.73               |
| 36    | .005              | .37        | . 49       | .59        | .70        | .80         | .95         | 1.08        | 1.20        | 1.34         | 1.48               |
| 37    | .0045             | .32        | . 43       | . 52       | . 62       | . 70        | .83         | .93         | 1.05        | 1.17         | 1.27               |
| 38    | .004              | . 28       | .38        | . 45       | . 52       | . 60        | .71         | .81         | .90         | 1.00         | 1.09               |
| 39    | .0035             | .25        | .34        | .39        | . 45       | . 52        | .61         | . 69        | .77         | .86          | .93                |
| 40    | .0031             | .22        | . 29       | .34        | .39        | . 45        | . 52        | . 59        | . 65        | .73          | . 79               |

# $TOPHET\ A^{*}$

#### Current Temperature Characteristics of Coiled Wire

Chart shows amperes necessary to raise to a given temperature in air, a coil of stated arbor size when stretched twice the close-wound length

| B & S | Dia. in<br>Inches | Arbor<br>Size | 200<br>392 | 300<br>572 | 400<br>752 | 500<br>932 | 600<br>1112 | 700<br>1292 | 800<br>1472 | 900<br>1652 | 1000<br>1832 | 1100°C.<br>2012°F. |
|-------|-------------------|---------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|--------------|--------------------|
| 11    | .091              | 3/16          | 8.60       | 12.1       | 16.8       | 21.8       | 26.8        | 32.6        | 38.8        | 44.8        | 52.0         | 59.8               |
| 12    | .081              | 3/16          | 7.35       | 10.5       | 14.0       | 17.8       | 22.9        | 27.3        | 33.1        | 38.0        | 44.2         | 50.3               |
| 13    | .072              | 3/16          | 6.20       | 8.82       | 11.7       | 15.2       | 18.9        | 23.1        | 27.8        | 31.8        | 36.7         | 42.5               |
| 14    | .064              | 3/16          | 5.20       | 7.45       | 10.1       | 12.8       | 16.0        | 19.6        | 23.2        | 26.6        | 31.0         | 35.7               |
| 15    | .057              | 3/16          | 4.30       | 6.30       | 8.4        | 10.7       | 13.6        | 16.3        | 19.4        | 22.4        | 25.9         | 29.4               |
| 16    | .051              | 3/16          | 3.62       | 5.25       | 6.80       | 9.02       | 11.3        | 13.7        | 16.4        | 18.9        | 22.0         | 25.2               |
| 17    | .045              | 3/16          | 3.00       | 4.30       | 5.80       | 7.56       | 9.45        | 11.3        | 13.6        | 15.8        | 18.4         | 21.0               |
| 18    | .040              | 1/8           | 2.47       | 3.47       | 4.72       | 6.10       | 7.77        | 9.45        | 11.3        | 13.3        | 15.7         | 17.5               |
| 19    | .036              | 1/8           | 2.04       | 2.94       | 3.88       | 5.15       | 6.50        | 7.97        | 9.66        | 11.3        | 13.4         | 14.7               |
| 20    | .032              | 1/8           | 1.68       | 2.42       | 3.26       | 4.30       | 5.46        | 6.72        | 8.20        | 9.65        | 11.3         | 12.6               |
| 21    | .0285             | 1/8           | 1.42       | 1.99       | 2.73       | 3.57       | 4.62        | 5.67        | 6.82        | 7.97        | 9.45         | 10.5               |
| 22    | .0253             | 1/8           | 1.18       | 1.68       | 2.31       | 3.04       | 3.88        | 4.72        | 5.77        | 6.72        | 7.97         | 8.92               |
| 23    | .0226             | 1/8           | 1.01       | 1.37       | 1.89       | 2.52       | 3.26        | 4.00        | 4.83        | 5.77        | 6.72         | 7.45               |
| 24    | .0201             | 1/8           | .82        | 1.16       | 1.57       | 2.10       | 2.73        | 3.36        | 4.10        | 4.82        | 5.67         | 6.30               |
| 25    | .0179             | 1/8           | . 68       | 1.02       | 1.37       | 1.78       | 2.31        | 2.83        | 3.47        | 4.10        | 4.72         | 5.35               |
| 26    | .0159             | 1/8           | .57        | .840       | 1.16       | 1.47       | 1.89        | 2.42        | 2.94        | 3.47        | 3.99         | 4.52               |
| 27    | .0142             | 1/8           | . 47       | .692       | .970       | 1.26       | 1.58        | 2.00        | 2.41        | 2.84        | 3.36         | 3.78               |
| 28    | .0126             | 1/8           | . 40       | . 588      | .800       | 1.05       | 1.36        | 1.68        | 1.99        | 2.31        | 2.73         | 3.15               |
| 29    | .0113             | 1/8           | .34        | .484       | . 670      | .882       | 1.15        | 1.37        | 1.68        | 1.99        | 2.31         | 2.62               |
| 30    | .010              | 1/8           | .27        | . 400      | . 557      | .736       | .945        | 1.16        | 1.37        | 1.68        | 1.99         | 2.20               |
| 31    | .0089             | 1/16          | .210       | .315       | . 442      | .597       | .767        | .945        | 1.16        | 1.37        | 1.68         | 1.89               |
| 32    | .008              | 1/16          | .168       | .252       | .356       | . 482      | . 632       | . 797       | .966        | 1.16        | 1.36         | 1.58               |
| 33    | .0071             | 1/16          | .137       | . 200      | . 294      | .388       | .515        | . 650       | .800        | . 945       | 1.15         | 1.26               |
| 34    | .0063             | 1/16          | .104       | .158       | . 231      | .315       | . 420       | .525        | . 661       | .776        |              |                    |
| 35    | .0056             | 1/16          | .074       | .126       | .189       | . 262      | .336        | . 441       | .546        | . 650       | . 767        | .89                |
| 36    | .005              | 1/32          | .067       | .105       | .158       | .210       | . 284       | 4 .36       |             |             |              |                    |
| 37    | .0045             | 1/32          | .056       | .088       | .126       | .178       | .23         | . 294       | .378        |             |              |                    |
| 38    | .004              | 1/32          | .046       | .073       | .105       | .147       | .200        | . 255       |             |             |              |                    |
| 39    | .0035             | 1/32          | .039       | .062       | . 088      | .126       | . 15        | . 210       |             |             |              |                    |
| 40    | .0031             | 1/32          | .033       | .052       | .073       | . 105      | .13         | 7 .16       | 8 . 220     | . 253       | .305         | . 34               |

Resistance of Ribbon in Ohms Per Foot at 20°C. (68°F.) Resistivity 510 Ohms Per square Mil Foot at 20°C. (68°F.)

| Thick                      | ness                                      |                                           |                                           |                                           |                                           |                                           | WIDTH                                          | I IN INC                                       | HES                                            |                                                |                                                |                                                  |                                                |                                                     |
|----------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| B & S                      | Inches                                    | 1/64<br>.015625                           | ⅓₂<br>.03125                              | 3%4<br>.048675                            | ½6<br>.0625                               | 3/32<br>.09375                            | ½<br>.125                                      | 3/16<br>.1875                                  | ½<br>.250                                      | 3/8<br>.375                                    | ½<br>.500                                      | 5%<br>.625                                       | ³¼<br>.750                                     | 1″<br>1.000                                         |
| 10<br>11<br>12<br>13<br>14 | .102<br>.091<br>.081<br>.072<br>.064      |                                           |                                           |                                           |                                           |                                           |                                                | .04521                                         | .02128<br>.02385<br>.02679<br>.03014<br>.03391 | .01333<br>.01495<br>.01679<br>.01889<br>.02125 | .01000<br>.01121<br>.01259<br>.01417<br>.01594 | .008000<br>.008967<br>.01007<br>.01133<br>.01275 | 006667<br>007472<br>008395<br>009444<br>01063  | .005000<br>.005605<br>.006297<br>.007083<br>.007969 |
| 15<br>16<br>17<br>18<br>19 | .057<br>.051<br>.045<br>.040              |                                           |                                           |                                           |                                           |                                           | .1085<br>.1206                                 | .05077<br>.05674<br>.06430<br>.07234<br>.08038 | .03807<br>.04255<br>.04823<br>.05426<br>.06028 | .02386<br>.02667<br>.03022<br>.03400<br>.03778 | .01789<br>.02000<br>.02267<br>.02550<br>.02833 | .01432<br>.01600<br>.01813<br>.02400<br>.02267   | 01193<br>01333<br>01511<br>01700<br>01889      | .008947<br>.01000<br>.01133<br>.01275<br>.01417     |
| 20<br>21<br>22             | .032<br>.0285<br>.0253                    |                                           |                                           |                                           |                                           |                                           | .1356<br>.1523<br>.1716                        | .09043<br>.1015<br>.1144                       | .06782<br>.07615<br>.08579                     | .04250<br>.04772<br>.05376                     | .03188<br>.03579<br>.04032                     | .02550<br>.02863<br>.03225                       | 02125<br>02385<br>02688                        | .01594<br>.01789<br>.02016                          |
| 23<br>24                   | .0226<br>.0201                            |                                           |                                           | .5758                                     | . 4319                                    | . 2879                                    | .1921<br>.2159                                 | .1204<br>.1353                                 | .09027<br>.1015                                | .06018<br>.06766                               | .04513<br>.05075                               | .03611<br>.04060                                 | 03009                                          | .02257<br>.02537                                    |
| 25<br>26<br>27<br>28<br>29 | .0179<br>.0159<br>.0142<br>.0126<br>.0113 |                                           |                                           | .6466<br>.7280<br>.8151<br>.9186<br>1.024 | .4850<br>.5460<br>.6113<br>.6890<br>.7682 | .3233<br>.3640<br>.4076<br>.4593<br>.5121 | . 2425<br>. 2730<br>. 3057<br>. 3445<br>. 3841 | .1520<br>.1711<br>.1915<br>.2159<br>.2407      | .1140<br>.1283<br>.1437<br>.1619<br>.1805      | .07598<br>.08553<br>.09577<br>.1079<br>.1204   | .05698<br>.06415<br>.07183<br>.08095<br>.09027 | .04559<br>.05132<br>.05746<br>.06476<br>.07221   | .03799<br>.04277<br>.04789<br>.05397<br>.06018 | .02849<br>.03208<br>.03592<br>.04048<br>.04513      |
| 30<br>31<br>32<br>33<br>34 | .010<br>.0089<br>.0080<br>.0071<br>.0063  | 3.472<br>3.902<br>4.340<br>4.891<br>5.512 | 1.736<br>1.951<br>2.170<br>2.445<br>2.756 | 1.157<br>1.301<br>1.447<br>1.630<br>1.837 | .8681<br>.9754<br>1.085<br>1.223<br>1.378 | .5787<br>.6503<br>.7234<br>.8151<br>.9186 | .4340<br>.4877<br>.6145<br>.6923<br>.7803      | .2720<br>.3056<br>.3400<br>.3831<br>.4317      | .2040<br>.2292<br>.2550<br>.2873<br>.3238      | .1360<br>.1528<br>.1700<br>.1915<br>.2159      | .1020<br>.1146<br>.1275<br>.1437<br>.1619      | .08160<br>.09169<br>.1020<br>.1149<br>.1295      | .06800<br>.07640<br>.08500<br>.09577<br>.1079  | .05100<br>.05730<br>.06375<br>.07183<br>.08095      |
| 35<br>36<br>37<br>38<br>39 | .0056<br>.005<br>.0045<br>.004            | 6.201<br>6.945<br>7.716<br>8.681<br>9.921 | 3.100<br>3.472<br>3.858<br>4.340<br>4.961 | 2.067<br>2.315<br>2.572<br>2.894<br>3.307 | 1.550<br>1.736<br>1.929<br>2.458<br>2.809 | 1.170<br>1.311<br>1.457<br>1.639<br>1.873 | .8778<br>.9832<br>1.093<br>1.229<br>1.405      | .4857<br>.5440<br>.6044<br>.6800<br>.7771      | .3643<br>.4080<br>.4533<br>.5100<br>.5829      | .2429<br>.2720<br>.3022<br>.3400<br>.3886      | .1821<br>.2040<br>.2267<br>.2550<br>.2914      | .1457<br>.1632<br>.1813<br>.2040<br>.2331        | .1214<br>.1360<br>.1511<br>.1700<br>.1943      | .09107<br>.1020<br>.1133<br>.1275<br>.1457          |
| 40                         | .0031<br>.00275<br>.00250<br>.00225       | 11.20<br>12.63<br>13.89<br>15.43<br>17.36 | 5.601<br>6.313<br>6.945<br>7.716<br>9.831 | 5.243                                     | 3.171<br>3.575<br>3.933<br>4.370<br>4.916 | 2.114<br>2.383<br>2.622<br>2.913<br>3.277 | 1.586<br>1.788<br>1.967<br>2.185<br>2.458      | .8774<br>.9890<br>1.088<br>1.209<br>1.360      | .6581<br>.7418<br>.8160<br>.9067<br>1.020      | .4387<br>.4945<br>.5440<br>.6044<br>.6800      | .3290<br>.3709<br>.4080<br>.4533<br>.5100      | .2632<br>.2967<br>.3264<br>.3627<br>.4080        | .2194<br>.2473<br>.2720<br>.3022<br>.3400      | .1645<br>.1855<br>.2040<br>.2267<br>.2550           |
|                            | .00175<br>.0015<br>.00125                 | 23.15                                     | 11.24<br>13.11<br>15.73<br>19.66          | 7.491<br>8.739<br>10.49<br>13.11          | 5.618<br>6.554<br>7.866<br>9.831          | 3.745<br>4.370<br>5.244<br>6.554          | 2.810<br>3.277<br>3.933<br>4.916               | 1.554<br>1.813<br>2.176<br>2.720               | 1.166<br>1.360<br>1.632<br>2.040               | .7771<br>.9067<br>1.088<br>1.360               | .5829<br>.6800<br>.8160<br>1.020               | .4663<br>.5440<br>.6528<br>.8160                 | .3886<br>.4533<br>.5440<br>.6800               | .2914<br>.3400<br>.4080<br>.5100                    |

All sizes to the left of the double line are rolled with round edges. Resistances of these sizes are calculated according to the method advocated by the American Society for Testing Materials. That is, if the width to thickness ratio of a round edged strip is less than 15 to 1, the cross sectional area shall be considered 6% less than a true rectangle when calculating the resistance.

If the width to thickness ratio is greater than 15 to 1, the cross sectional area shall be considered 17% less than a true rectangle.

Resistances to the right of the double line are figured for square edged strip.

All resistances below the solid black line are for sizes with a width to thickness ratio greater than 15 to 1.

#### Feet Per Pound of Ribbon

| Thi            | ckness               |                           |                            |                |                  |                                        | WID            | TH IN                                 | INCHES                  |                                     |                         |                         |                         |                         |
|----------------|----------------------|---------------------------|----------------------------|----------------|------------------|----------------------------------------|----------------|---------------------------------------|-------------------------|-------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| B&S            | Inches               | ½ <sub>4</sub><br>.015625 | 1/ <sub>32</sub><br>.03125 | 3%4<br>.046875 | 1/16<br>.0625    | <sup>3</sup> / <sub>32</sub><br>.09375 | ½<br>.125      | <sup>3</sup> ⁄ <sub>16</sub><br>.1875 | ½<br>.250               | <sup>3</sup> / <sub>8</sub><br>.375 | ½<br>.500               | 5/8<br>.625             | 3⁄4—<br>.750            | 1″—<br>1.000            |
| 10<br>11<br>12 | .102<br>.091<br>.081 | .010020                   | .00120                     |                |                  |                                        |                |                                       | 11.44<br>12.82<br>14.41 | 7.174<br>8.039<br>9.025             | 5.376<br>6.028<br>6.770 | 4.301<br>4.822<br>5.417 | 3.584<br>4.018<br>4.515 | 2.688<br>3.013<br>3.385 |
| 13<br>14       | .072                 |                           |                            |                |                  |                                        |                | 21.91<br>24.31                        | 16.21<br>18.23          | 10 .16<br>11 .43                    | 7.616<br>8.569          | 6.094<br>6.854          | 5.079<br>5.714          | 3.808<br>4.28           |
| 15             | .057                 |                           |                            |                |                  |                                        |                | 27.29                                 | 20.47<br>22.88          | 12.83<br>14.34                      | 9.625<br>10.75          | 7.698<br>8.606          | 6.414<br>7.168          | 4.810<br>5.370          |
| 16             | .051                 |                           |                            |                |                  |                                        |                | 30.51<br>34.58                        | 25.93                   | 16.25                               | 12.19                   | 9.747                   | 8.123                   | 6.09                    |
| 17             | .045                 |                           |                            |                |                  |                                        | 58.34          | 38.90                                 | 29.17                   | 18.28                               | 13.71                   | 10.97                   | 9.141                   | 6.85                    |
| 18<br>19       | .040<br>.036         |                           |                            |                |                  |                                        | 64.81          | 43.22                                 | 32.41                   | 20.31                               | 15.23                   | 12.19                   | 10.16                   | 7.61                    |
| 20             | .032                 |                           |                            |                |                  |                                        | 72.94          | 48.61                                 | 36.47                   | 22.85                               | 17.14                   | 13.71                   | 11.43                   | 8.56                    |
| 21             | .0285                |                           |                            |                |                  |                                        | 81.90          | 54.59                                 | 40.95                   | 25.68                               | 19.24                   | 15.39<br>17.34          | 12.83<br>14.45          | 9.62<br>10.84           |
| 22             | .0253                |                           |                            |                |                  |                                        | 92.25          | 61.50                                 | 46.13                   | 28.90<br>32.35                      | 21.68<br>24.27          | 19.41                   | 16.18                   | 12.13                   |
| 23<br>24       | .0226                |                           | 464.4                      | 309.6          | 232.2            | 154.8                                  | 103.3<br>116.1 | 64.72<br>72.78                        | 48.54<br>54.56          | 36.38                               | 27.29                   | 21.83                   | 18.19                   | 13.64                   |
| 25             | .0179                |                           | 521.6                      | 347.7          | 260.8            | 173.8                                  | 130.4          | 81.70                                 | 61.27                   | 40.85                               | 30.64                   | 24.51                   | 20.42                   | 15.32                   |
| 26             | .0159                |                           | 587.0                      | 391.4          | 293.5            | 195.7                                  | 146.8          | 92.00                                 | 68.97                   | 46.00                               | 34.49                   | 27.59                   | 22.99                   | 17.25                   |
| 27             | .0142                |                           | 657.4                      | 438.2          | 328.7            | 219.1                                  | 164.3          | 103.0                                 | 77.22                   | 51.49                               | 38.62                   | 30.89                   | 25.75                   | 19.31                   |
| 28             | .0126                |                           | 740.8                      |                | 370.4            | 247.0                                  | 185.2          | 116.1                                 | 87.03                   | 58.04                               | 43.54                   | 34.82                   | 29.02<br>32.35          | 21.76<br>24.27          |
| 29             | .0113                |                           | 826.2                      | 550.7          | 413.1            | 261.0                                  | 206.5          | 129.4                                 | 97.09                   | 64.72                               | 48.54                   | 38.82                   |                         |                         |
| 30             | .010                 | 1867.                     | 933.7                      |                | 466.6            | 311.1                                  | 233.4          | 146.2                                 | 109.7                   | 73.10                               | 54.85                   | 43.88                   | 36.56                   | 27.42<br>30.83          |
| 31             | .0089                | 2098.                     | 1049.                      | 699.3          | 524.4            | 349.7                                  | 262.2          | 164.3                                 | 123.2                   | 82.17                               | 61.61<br>68.54          | 49.29<br>54.85          | 41.08<br>45.70          | 34.28                   |
| 32             | .008                 | 2334.                     | 1167.                      | 777.6          | 583.4            | 389.0<br>438.2                         | 330.4<br>372.3 | 182.8<br>206.0                        | 137.1<br>154.5          | 91.41<br>103.0                      | 77.22                   | 61.80                   | 51.49                   | 38.65                   |
| 33<br>34       | .0071<br>.0063       | 2630.<br>2964.            | 1315.<br>1482.             | 876.4<br>988.1 | 657.5<br>740.7   | 493.8                                  | 419.5          | 232.1                                 | 174.1                   | 116.1                               | 87.03                   | 69.64                   | 58.04                   | 43.5                    |
| 35             | .0056                | 3334.                     | 1667.                      | 1111.          | 833.3            | 629.3                                  | 471.9          | 261.2                                 | 195.8                   | 130.6                               | 97.94                   | 78.37                   | 65.27                   | 48.9                    |
| 36             | .005                 | 3734.                     | 1867.                      | 1245.          | 933.7            | 704.7                                  | 528.5          | 292.5                                 | 219.3                   | 146.2                               | 109.7                   | 87.72                   | 73.10                   | 54.8                    |
| 37             | .0045                | 4149                      | 2074.                      | 1383.          | 1037.            | 783.1                                  | 587.2          | 325.0                                 | 243.7                   | 162.5                               | 121.9                   | 97.47                   | 81.23                   | 60.9                    |
| 38<br>39       | .004                 | 4669 .<br>5333 .          | 2335 .<br>2667 .           | 1556.<br>1778. | 1322 .<br>1510 . | 881.1<br>1007.                         | 660.9<br>755.3 | 365.6<br>417.9                        | 274.2<br>313.4          | 182.8<br>208.9                      | 137.1<br>156.7          | 109.7<br>125.4          | 91.41<br>104.5          | 68.5<br>78.3            |
|                |                      |                           |                            |                |                  |                                        | 852.5          | 471.7                                 | 353.9                   | 235.9                               | 176.9                   | 141.5                   | 117.9                   | 88.4                    |
| 40             | .0031                | 6024<br>6789              | 3012.                      | 2274.<br>2563. | 1705.<br>1922.   | 1137.<br>1282.                         | 961.5          | 531.9                                 | 398.9                   | 265.9                               | 199.4                   | 159.5                   | 132.9                   | 99.7                    |
|                | .00273               | 7468                      | 3734                       | 2819.          | 2115.            | 1410.                                  | 1057.          | 585.1                                 | 438.8                   | 292.5                               | 219.3                   | 175.5                   | 146.2                   | 109.7                   |
|                | .0023                |                           | 4145.                      | 3133.          | 2350.            | 1566.                                  | 1175           | 650.2                                 | 487.6                   | 325.0                               | 243.7                   | 195.0                   | 162.5                   | 121.9                   |
|                | .002                 | 9337                      |                            | 3524.          | 2643.            | 1762.                                  | 1322.          | 731.0                                 | 548.5                   | 365.6                               | 274.2                   | 219.3                   | 182.8                   | 137.1                   |
|                | .0017                |                           | 1                          | 4027.          | 3021.            | 2014.                                  | 1510.          | 835.4                                 | 627.0                   | 417.9                               | 313.4                   | 250.7                   | 208.9                   | 156.7<br>182.8          |
|                | .0015                | 12450                     |                            | 4699.          | 3524.            | 2350.                                  | 1762.          | 974.7                                 | 731.0                   | 487.6                               | 365.6<br>438.8          | 292.5<br>351.0          | 243.7<br>292.5          | 219.3                   |
|                | .0012                | 1                         |                            | 5637.<br>7047. | 4228.<br>5285.   | 2819.<br>3524.                         | 2115.<br>2643. | 1117.0<br>1462.0                      | 877.2<br>1097.0         | 585.1<br>731.0                      | 438.8<br>548.5          | 438.8                   | 365.6                   | 274.2                   |
|                | .001                 | 21150                     | . 10570.                   | 1041.          | 0200.            | 0024.                                  | 2010.          | 1102.0                                | 1001.0                  | .01.0                               | 020.0                   |                         |                         |                         |

List Price Per Pound of Ribbon

| Thic  | kness  |       |        |                | W             | IDTH IN | INCHES        |           |                        |        |            |
|-------|--------|-------|--------|----------------|---------------|---------|---------------|-----------|------------------------|--------|------------|
| B & S | Inches | .0156 | .03125 | 3%4<br>.046875 | 1/16<br>.0625 | .1250   | 3/16<br>.1875 | ½<br>.250 | <sup>3</sup> 8<br>.375 | .500   | ¾ to<br>1¾ |
| 14    | .064   |       |        |                |               |         |               | 4.46      | 4.46                   | 4.20   | 4.20       |
| 15    | .057   |       |        |                |               |         |               | 4.46      | 4.46                   | 4.32   | 4.32       |
| 16    | .051   |       |        |                |               |         |               | 4.46      | 4.46                   | 4.32   | 4.32       |
| 17    | .045   |       |        |                |               |         |               | 4.46      | 4.46                   | 4.32   | 4.32       |
| 18    | .040   |       |        |                |               |         |               | 4.46      | 4.46                   | 4.46   | 4.46       |
| 19    | .036   |       |        |                |               |         |               | 4.46      | 4.46                   | 4.46   | 4.46       |
| 20    | .032   |       |        |                |               | 5.34    | 4.72          | 4.58      | 4.58                   | 4.58   | 4.58       |
| 21    | .0285  |       |        |                |               | 5.34    | 4.84          | 4.72      | 4.72                   | 4.72   | 4.72       |
| 22    | .0253  |       |        |                |               | 5.34    | 4.98          | 4.84      | 4.84                   | 4.84   | 4.84       |
| 23    | .0226  |       |        |                |               | 5.34    | 5.10          | 4.98      | 4.98                   | 4.98   | 4.98       |
| 24    | .0201  |       |        | 6.56           | 5.48          | 5.34    | 5.22          | 5.10      | 5.10                   | 5.10   | 5.10       |
| 25    | .0179  |       |        | 6.74           | 5.60          | 5.48    | 5.34          | 5.22      | 5.22                   | 5.22   | 5.22       |
| 26    | .0159  |       |        | 6.88           | 5.74          | 5.60    | 5.48          | 5.34      | 5.34                   | 5.34   | 5.34       |
| 27    | .0142  |       |        | 7.02           | 5.86          | 5.74    | 5.60          | 5.48      | 5.48                   | 5.48   | 5.48       |
| 28    | .0126  |       |        | 7.34           | 6.12          | 5.86    | 5.74          | 5.60      | 5.60                   | 5.60   | 5.60       |
| 29    | .0113  |       |        | 7.64           | 6.36          | 6.00    | 5.86          | 5.74      | 5.74                   | 5.74   | 5.74       |
| 30    | .010   |       | 9.94   | 7.94           | 6.62          | 6.12    | 6.00          | 5.86      | 5.86                   | 5.86   | 5.86       |
| 31    | .0089  |       | 10.20  | 8.26           | 6.88          | 6.24    | 6.12          | 6.12      | 6.12                   | 6.12   | 6.12       |
| 32    | .008   | 16.32 | 10.44  | 8.60           | 7.14          | 6.36    | 6.24          | 6.36      | 6.36                   | 6.36   | 6.36       |
| 33    | .0071  | 17.08 | 10.96  | 8.86           | 7.38          | 6.62    | 6.50          | 6.62      | 6.62                   | 6.62   | 6.62       |
| 34    | .0063  | 17.84 | 11.46  | 9.18           | 7.64          | 7.02    | 6.88          | 7.14      | 7.14                   | 7.14   | 7.14       |
| 35    | .0056  | 19.12 | 12.24  | 9.62           | 7.90          | 7.38    | 7.52          | 7.90      | 7.90                   | 7.90   | 7.90       |
| 36    | .005   | 20.40 | 13.00  | 10.16          | 8.28          | 7.90    | 8.16          | 8.92      | 8.92                   | 8.92   | 8.92       |
| 37    | .0045  | 21.66 | 13.76  | 10.86          | 8.92          | 8.40    | 8.92          | 10.20     | 10.20                  | 10.20  | 10.20      |
| 38    | .004   | 23.58 | 14.78  | 12.02          | 10.20         | 9.18    | 10.20         | 11.80     | 11.80                  | 11.80  | 11.80      |
| 39    | .0035  | 26.14 | 16.32  | 14.16          | 12.74         | 11.46   | 12.74         | 14.66     | 14.66                  | 14.66  | 14.66      |
| 40    | .0031  | 29.32 | 18.48  | 16.56          | 15.30         | 14.02   | 15.30         | 17.84     | 17.84                  | 17.84  | 17.84      |
|       | .00275 | 32.52 | 21.04  | 19.12          | 17.84         | 16.56   | 18.36         | 19.38     | 20.40                  | 21.42  | 23.80      |
|       | .0025  | 36.34 | 23.58  | 21.66          | 20.40         | 19.12   | 22.26         | 24.72     | 27.54                  | 30.60  | 34.00      |
|       | .00225 | 40.16 | 26.76  | 25.52          | 24.22         | 22.94   | 29.06         | 32.30     | 35.86                  | 39.78  | 44.20      |
|       | .002   | 44.62 | 30.60  | 29.82          | 29.32         | 28.04   | 36.88         | 40.96     | 45.38                  | 50.48  | 56.10      |
|       | .00175 | 49.72 | 36.34  | 36.34          | 36.34         | 36.96   | 44.62         | 49.64     | 55.08                  | 61.20  | 68.00      |
|       | .0015  | 54.82 | 42.06  | 42.06          | 42.06         | 50.14   | 55.76         | 61.96     | 68.84                  | 76.50  | 85.00      |
|       | .00125 | 73.32 | 63.12  | 63.12          | 63.12         | 73.68   | 81.34         | 85.58     | 90.18                  | 94.86  | 105.40     |
|       | .001   | 96.90 | 84.14  | 84.14          | 84.14         | 95.98   | 100.98        | 106.24    | 110.40                 | 116.28 | 129.20     |

Weight of Resistance Ribbon in Pounds Per Thousand Feet

| _ | Thiel | kness  |                 |         |                |             |                | WIDTH II  | N INCHE                               |           |                                     |           |             |                                     |             |
|---|-------|--------|-----------------|---------|----------------|-------------|----------------|-----------|---------------------------------------|-----------|-------------------------------------|-----------|-------------|-------------------------------------|-------------|
|   | B & S | Inches | 1/64<br>.015625 | .03125  | 3%4<br>.046875 | ½6<br>.0625 | 3/32<br>.09375 | ½<br>.125 | <sup>3</sup> / <sub>16</sub><br>.1875 | ½<br>.250 | <sup>3</sup> / <sub>8</sub><br>.375 | ½<br>.500 | 5/8<br>.625 | <sup>3</sup> ⁄ <sub>4</sub><br>.750 | 1″<br>1.000 |
|   | 10    | .102   |                 |         |                |             |                |           |                                       | 87.41     | 139.4                               | 186.0     | 232.5       | 279.0                               | 372.0       |
|   | 11    | .091   |                 |         |                |             |                |           |                                       | 77.99     | 124.4                               | 165.9     | 207.4       | 248.9                               | 331.9       |
|   | 12    | .081   |                 |         |                |             |                |           |                                       | 69.42     | 110.8                               | 147.7     | 184.6       | 221.5                               | 295.4       |
|   | 13    | .072   |                 |         |                |             |                |           | 45.64                                 | 61.70     | 98.46                               | 131.3     | 164.1       | 196.9                               | 262.6       |
|   | 14    | .064   |                 |         |                |             |                |           | 41.14                                 | 54.85     | 87.52                               | 116.7     | 145.9       | 175.0                               | 233.4       |
| - | 15    | .057   |                 |         |                |             |                |           | 36.64                                 | 48.85     | 77.95                               | 103.9     | 129.9       | 155.9                               | 207.9       |
|   | 16    | .051   |                 |         |                |             |                |           | 32.78                                 | 43.71     | 69.74                               | 92.99     | 116.2       | 139.5                               | 186.0       |
|   | 17    | .045   |                 |         |                |             |                |           | 28.92                                 | 38.57     | 61.54                               | 82.05     | 102.6       | 123.1                               | 164.1       |
|   | 18    | .040   |                 |         |                |             |                | 17.14     | 25.71                                 | 34.28     | 54.70                               | 72.94     | 91.17       | 109.4                               | 145.9       |
|   | 19    | .036   |                 |         |                |             |                | 15.43     | 23.14                                 | 30.85     | 49.23                               | 65.64     | 82.05       | 98.46                               | 131.3       |
| - | 20    | .032   |                 |         |                |             |                | 13.71     | 20.57                                 | 27.42     | 43.76                               | 58.35     | 72.94       | 87.52                               | 116.7       |
|   | 21    | .0285  |                 |         |                |             |                | 12.21     | 18.32                                 | 24.42     | 38.97                               | 51.97     | 64.96       | 77.95                               | 103.9       |
|   | 22    | .0253  |                 |         |                |             |                | 10.84     | 16.26                                 | 21.68     | 34.60                               | 46.13     | 57.67       | 69.20                               | 92.26       |
|   | 23    | .0226  |                 |         |                |             |                | 9.684     | 15.45                                 | 20.60     | 30.91                               | 41.21     | 51.51       | 61.81                               | 82.42       |
|   | 24    | .0201  |                 |         | 3.230          | 4.306       | 6.460          | 8.613     | 13.74                                 | 18.33     | 27.49                               | 36.65     | 45.81       | 54.98                               | 73.30       |
|   | 25    | .0179  |                 |         | 2.876          | 3.835       | 5.753          | 7.670     | 12.24                                 | 16.32     | 24.48                               | 32.64     | 40.80       | 48.96                               | 65.28       |
|   | 26    | .0159  |                 |         | 2.555          | 3.407       | 5.110          | 6.813     | 10.87                                 | 14.50     | 21.74                               | 28.99     | 36.24       | 43.49                               | 57.98       |
|   | 27    | .0142  |                 |         | 2.282          | 3.042       | 4.564          | 6.085     | 9.710                                 | 12.95     | 19.42                               | 25.89     | 32.37       | 38.84                               | 51.78       |
|   | 28    | .0126  |                 |         | 2.025          | 2.700       | 4.049          | 5.399     | 8.616                                 | 11.49     | 17.23                               | 22.97     | 28.72       | 34.46                               | 45.95       |
|   | 29    | .0113  |                 |         | 1.816          | 2.421       | 3.632          | 4.842     | 7.727                                 | 10.30     | 15.45                               | 20.60     | 25.76       | 30.91                               | 41.21       |
|   | 30    | .010   | . 5356          | 1.071   | 1.607          | 2.143       | 3.214          | 4.285     | 6.838                                 | 9.117     | 13.68                               | 18.23     | 22.79       | 27.35                               | 36.47       |
|   | 31    | .0089  | .4767           | .9534   | 1.430          | 1.907       | 2.860          | 3.814     | 6.086                                 | 8.114     | 12.17                               | 16.23     | 20.29       | 24.34                               | 32.46       |
|   | 32    | .008   | .4285           | .8570   | 1.286          | 1.714       | 2.571          | 3.027     | 5.470                                 | 7.294     | 10.94                               | 14.59     | 18.23       | 21.88                               | 29.17       |
|   | 33    | .0071  | .3803           | .7606   | 1.141          | 1.521       | 2.282          | 2.686     | 4.855                                 | 6.473     | 9.709                               | 12.95     | 16.18       | 19.42                               | 25.89       |
|   | 34    | .0063  | .3374           | .6749   | 1.012          | 1.350       | 2.025          | 2.384     | 4.308                                 | 5.744     | 8.615                               | 11.49     | 14.36       | 17.23                               | 22.97       |
| - | 35    | .0056  | . 2999          | . 5999  | .8999          | 1.200       | 1.589          | 2.119     | 3.829                                 | 5.106     | 7.658                               | 10.21     | 12.76       | 15.32                               | 20.42       |
|   | 36    | .005   | .2678           | . 5356  | .8035          | 1.071       | 1.419          | 1.892     | 3.419                                 | 4.559     | 6.838                               | 9.117     | 11.40       | 13.68                               | 18.23       |
|   | 37    | .0045  | . 2410          | .4821   | .7231          | . 9641      | 1.277          | 1.703     | 3.077                                 | 4.103     | 6.154                               | 8.205     | 10.26       | 12.31                               | 16.41       |
|   | 38    | .004   | .2142           | .4285   | . 6428         | .7567       | 1.135          | 1.513     | 2.735                                 | 3.647     | 5.470                               | 7.294     | 9.117       | 10.94                               | 14.59       |
|   | 39    | .0035  | . 1875          | .3749   | .5624          | . 6621      | . 9932         | 1.324     | 2.393                                 | 3.191     | 4.786                               | 6.382     | 7.977       | 9.573                               | 12.76       |
|   | 40    | .0031  | .1660           | .3321   | . 4398         | .5864       | .8797          | 1.173     | 2.120                                 | 2.826     | 4.239                               | 5.653     | 7.066       | 8.479                               | 11.31       |
|   |       | .00275 | . 1473          | . 2946  | .3902          | . 5202      | .7803          | 1.040     | 1.880                                 | 2.507     | 3.761                               | 5.014     | 6.268       | 7.522                               | 10.03       |
|   |       | .0025  | . 1339          | . 2678  | . 3547         | .4729       | .7094          | . 9459    | 1.709                                 | 2.279     | 3.419                               | 4.559     | 5.698       | 6.838                               | 9.11        |
|   |       | .00225 | . 1205          | .2410   | .3192          | .4256       | . 6385         | .8513     | 1.538                                 | 2.051     | 3.077                               | 4.103     | 5.128       | 6.154                               | 8.20        |
|   |       | .002   | . 1071          | .1892   | . 2083         | .3783       | .5675          | . 7567    | 1.368                                 | 1.823     | 2.735                               | 3.647     | 4.559       | 5.470                               | 7.29        |
|   |       | .00175 | .09373          | . 1655  | .2483          | .3310       | .4966          | . 6621    | 1.197                                 | 1.595     | 2.393                               | 3.191     | 3.989       | 4.786                               | 6.38        |
| ١ |       | .0015  | .08034          | .1419   | . 2128         | .2838       | .4256          | . 5675    | 1.026                                 | 1.368     | 2.051                               | 2.735     | 3.419       | 4.103                               | 5.47        |
|   |       | .00125 | .06695          | .1182   | .1774          | . 2365      | .3547          | . 4729    | .8547                                 | 1.140     | 1.709                               | 2.279     | 2.849       | 3.419                               | 4.55        |
| ١ |       | .001   | .04729          | .094586 | . 14188        | .18917      | . 28376        | .37834    | . 68377                               | .9117     | 1.3675                              | 1.8234    | 2.27925     | 2.7351                              | 3.640       |

To find the weight of TOPHET C multiply by 0.980 To find the weight of CUPRON

multiply by 1.056

To find the weight of MANGANIN To find the weight of PURE NICKEL multiply by 0.974 multiply by 1.056

#### Current carrying capacity of ribbon

Chart shows amperes necessary to raise to a given temperature a straight ribbon in air.

| Siz                                                | ze                                       | 100<br>212                           | 200<br>392                           | 300<br>572                            | 400<br>752                               | 500<br>932                                | 600°C.<br>1112°F.                         |
|----------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|
| 164"<br>164"<br>164"<br>164"<br>164"               | .010<br>.0089<br>.008<br>.0071<br>.0063  | .660<br>.634<br>.585<br>.545         | 1.16<br>1.11<br>1.02<br>.955<br>.900 | 1.56<br>1.49<br>1.38<br>1.28<br>1.21  | 2.00<br>1.90<br>1.72<br>1.59<br>1.50     | 2.36<br>2.26<br>2.08<br>1.92<br>1.82      | 2.72<br>2.60<br>2.38<br>2.18<br>2.07      |
| 1/4"<br>164"<br>164"<br>1/64"<br>164"              | .0056<br>.005<br>.0045<br>.004<br>.0035  | .484<br>.460<br>.437<br>.413<br>.388 | .850<br>.803<br>.762<br>.720<br>.673 | 1.15<br>1.09<br>1.04<br>.983<br>.924  | 1.43<br>1.36<br>1.30<br>1.22<br>1.15     | 1.73<br>1.64<br>1.56<br>1.48<br>1.38      | 1.97<br>1.88<br>1.79<br>1.70<br>1.59      |
| 1/64"<br>1/32"<br>1/32"<br>1/32"<br>1/32"<br>1/32" | .0031<br>.010<br>.0089<br>.008<br>.0071  | .366<br>1.09<br>.995<br>.905<br>.820 | .632<br>1.91<br>1.73<br>1.58<br>1.45 | .870<br>2.60<br>2.34<br>2.12<br>1.94  | 1.08<br>3.32<br>3.02<br>2.75<br>2.52     | 1.30<br>3.97<br>3.58<br>3.28<br>2.99      | 1.52<br>4.60<br>4.16<br>3.80<br>3.48      |
| 1/32"<br>1/32"<br>1/32"<br>1/32"<br>1/32"<br>1/32" | .0063<br>.0056<br>.005<br>.0045<br>.004  | .754<br>.708<br>.660<br>.634<br>.585 | 1.32<br>1.24<br>1.16<br>1.11<br>1.02 | 1.77<br>1.66<br>1.56<br>1.49<br>1.38  | 2.31<br>2.15<br>2.00<br>1.90<br>1.72     | 2.71<br>2.53<br>2.36<br>2.26<br>2.08      | 3.15<br>2.93<br>2.72<br>2.60<br>2.38      |
| 1/32"<br>1/32"<br>1/32"<br>1/16"<br>1/16"          | .0035<br>.0031<br>.010<br>.0089<br>.008  | .545<br>.510<br>1.58<br>1.46<br>1.37 | .955<br>.900<br>2.72<br>2.53<br>2.37 | 1.28<br>1.21<br>3.75<br>3.49<br>3.24  | 1.59<br>1.50<br>4.70<br>4.38<br>4.10     | 1.92<br>1.82<br>5.65<br>5.28<br>4.92      | 2.18<br>2.07<br>6.55<br>6.06<br>5.65      |
| 1/16"<br>1/16"<br>1/16"<br>1/16"<br>1/16"<br>1/16" | .0071<br>.0063<br>.0056<br>.005          | 1.27<br>1.17<br>1.08<br>1.00<br>.950 | 2.20<br>2.03<br>1.90<br>1.76<br>1.65 | 3.00<br>2.77<br>2.57<br>2.37<br>2.21  | 3.83<br>3.55<br>3.30<br>3.07<br>2.88     | 4.58<br>4.23<br>3.92<br>3.63<br>3.42      | 5.25<br>4.88<br>4.52<br>4.21<br>3.94      |
| 1/16"<br>1/16"<br>1/16"<br>1/16"<br>3/32"<br>3/32" | .004<br>.0035<br>.0031<br>.010<br>.0089  | .876<br>.815<br>.750<br>2.20<br>2.04 | 1.53<br>1.42<br>1.32<br>3.84<br>3.56 | 2.05<br>1.83<br>1.75<br>5.24<br>4.85  | 2.68<br>2.40<br>2.29<br>6.50<br>6.06     | 3.14<br>2.80<br>2.69<br>8.03<br>7.45      | 3.67<br>3.26<br>3.12<br>9.36<br>8.70      |
| 3/32"<br>3/32"<br>3/32"<br>3/32"<br>3/32"          | .008<br>.0071<br>.0063<br>.0056          | 1.92<br>1.78<br>1.65<br>1.53<br>1.43 | 3.33<br>3.10<br>2.88<br>2.68<br>2.49 | 4.56<br>4.20<br>3.92<br>3.64<br>3.38  | 5.70<br>5.28<br>4.92<br>4.58<br>4.28     | 6.95<br>6.45<br>6.00<br>5.58<br>5.18      | 8.12<br>7.54<br>7.00<br>6.50<br>6.06      |
| 3/32"<br>3/32"<br>3/32"<br>3/32"<br>3/32"<br>1/8"  | .0045<br>.004<br>.0035<br>.0031          | 1.34<br>1.24<br>1.14<br>1.02<br>2.89 | 2.34<br>2.16<br>2.00<br>1.80<br>5.00 | 3.17<br>2.95<br>2.72<br>2.43<br>6.90  | 4.02<br>3.74<br>3.46<br>3.12<br>8.55     | 4.85<br>4.50<br>4.12<br>3.72<br>10.30     | 5.68<br>5.28<br>4.80<br>4.32<br>12.00     |
| 1/8"<br>1/8"<br>1/8"<br>1/8"<br>1/8"<br>1/8"       | .0089<br>.008<br>.0071<br>.0063<br>.0056 | 2.67<br>2.50<br>2.33<br>2.16<br>2.00 | 4.67<br>4.35<br>4.02<br>3.74<br>3.46 | 6.40<br>5.95<br>5.54<br>5.14<br>4.76  | 7.95<br>7.42<br>6.90<br>6.40<br>5.95     | 9.60<br>9.00<br>8.37<br>7.72<br>7.20      | 11.10<br>10.30<br>9.68<br>8.98<br>8.35    |
| 1/8"<br>1/8"<br>1/8"<br>1/8"<br>1/8"               | .005<br>.0045<br>.004<br>.0035<br>.0031  | 1.86<br>1.74<br>1.62<br>1.49<br>1.33 | 3.23<br>3.01<br>2.80<br>2.57<br>2.30 | 4.44<br>4.14<br>3.85<br>3.52<br>3.16  | 5.53<br>5.19<br>4.80<br>4.40<br>3.98     | 6.68<br>6.25<br>5.80<br>5.32<br>4.80      | 7.74<br>7.25<br>6.75<br>6.13<br>5.60      |
| 3/16"<br>3/16"<br>3/16"<br>3/16"<br>3/16"          | .010<br>.0089<br>.008<br>.0071<br>.0063  | 4.22<br>3.90<br>3.66<br>3.39<br>3.15 | 7.22<br>6.72<br>6.30<br>5.80<br>5.40 | 10.00<br>9.22<br>8.60<br>8.00<br>7.40 | 12.60<br>11.70<br>10.80<br>10.00<br>9.35 | 15.10<br>14.00<br>13.10<br>12.20<br>11.30 | 17.40<br>16.10<br>15.00<br>14.00<br>12.90 |
| 3/16"<br>3/16"<br>3/16"<br>3/16"<br>3/16"          | .0056<br>.005<br>.0045<br>.004           | 2.92<br>2.71<br>2.53<br>2.34<br>2.14 | 5.00<br>4.65<br>4.34<br>4.02<br>3.67 | 6.87<br>6.38<br>6.00<br>5.55<br>5.07  | 8.65<br>8.02<br>7.50<br>6.95<br>6.34     | 10.40<br>9.70<br>9.05<br>8.40<br>7.68     | 12.10<br>11.30<br>10.50<br>9.80<br>9.00   |
| 3/16"                                              | .0033                                    | 1.98                                 | 3.40                                 | 4.70                                  | 5.85                                     | 7.10                                      | 8.35                                      |

#### COLD ROLLED FURNACE STRIP

Resistance in Ohms Per Foot at 20°C. (68°F.)

| Thickness |         |        |        | W       | IDTH IN | INCHES |        |        |        |         |
|-----------|---------|--------|--------|---------|---------|--------|--------|--------|--------|---------|
| Inches    | 1/2     | 5/8    | 3/4    | 7∕8     | 1       | 11/8   | 11/4   | 11/2   | 1¾     | 2       |
| .130      | .00785  | .00628 | .00523 | .00448  | .00392  | .00349 | .00314 | .00262 | .00224 | .00196  |
| .125      | .00816  | .00653 | .00544 | .00466  | .00408  | .00363 | .00326 | .00272 | .00233 | .00204  |
| .120      | .00850  | .00680 | .00567 | .00486  | .00425  | .00378 | .00340 | .00283 | .00243 | .00212  |
| .115      | .00888  | .00710 | .00591 | .00507  | .00444  | .00394 | .00355 | .00296 | .00253 | .00222  |
| .110      | .00928  | .00742 | .00618 | .00530  | .00464  | .00412 | .00371 | .00309 | .00265 | .00232  |
| .105      | .00972  | .00777 | .00648 | . 00555 | .00486  | .00432 | .00389 | .00324 | .00278 | .00243  |
| .100      | .01020  | .00816 | .00680 | .00583  | .00510  | .00453 | .00408 | .00340 | .00291 | .00255  |
| .095      | .01074  | .00859 | .00716 | .00616  | .00537  | .00477 | .00430 | .00358 | .00307 | .00268  |
| .090      | .01133  | .00907 | .00756 | .00648  | .00567  | .00504 | .00453 | .00378 | .00324 | .00283  |
| .085      | .01200  | .00960 | .00800 | .00686  | .00600  | .00533 | .00480 | .00400 | .00343 | .00300  |
| .080      | .01276  | .01020 | .00850 | .00729  | .00638  | .00567 | .00510 | .00425 | .00364 | .00319  |
| .075      | .01360  | .01088 | .00907 | .00777  | .00680  | .00604 | .00544 | .00453 | .00389 | .00340  |
| .0725     | .01408  | .01126 | .00938 | .00804  | .00704  | .00625 | .00563 | .00469 | .00402 | .00352  |
| .070      | .01458  | .01166 | .00971 | .00833  | .00729  | .00648 | .00583 | .00486 | .00416 | .00364  |
| .0675     | .01512  | .01209 | .01007 | .00864  | .00756  | .00672 | .00604 | .00504 | .00432 | .00378  |
| .065      | . 01570 | .01255 | .01046 | .00897  | .00785  | .00697 | .00628 | .00523 | .00448 | . 00392 |
| .0625     | .01632  | .01306 | .01088 | .00933  | .00816  | .00726 | .00652 | .00544 | .00467 | .00408  |
| .060      | .01700  | .01360 | .01133 | .00971  | .00850  | .00756 | .00680 | .00567 | .00486 | .00425  |
| .055      | .01854  | .01484 | .01236 | .01060  | .00927  | .00824 | .00742 | .00618 | .00530 | .00464  |
| .050      | .02040  | .01632 | .01360 | .01166  | .01020  | .00907 | .00816 | .00680 | .00583 | .00510  |
| .045      | .02266  | .01813 | .01511 | .01295  | .01133  | .01007 | .00907 | .00756 | .00648 | . 00567 |
| .040      | .02550  | .0204  | .01700 | .01457  | .01275  | .01133 | .01020 | .00850 | .00729 | .00638  |
| .035      | .02910  | .0233  | .01943 | .01665  | .01457  | .01295 | .01166 | .00971 | .00833 | .00729  |
| .030      | .03400  | .0272  | .0227  | .01943  | .01700  | .01511 | .01360 | .01133 | .00971 | .00850  |
| .025      | .04080  | .0326  | .0272  | .0233   | .0204   | .01813 | .01632 | .01360 | .01166 | .01020  |
| .020      | .0510   | .0408  | .0340  | .0291   | .0255   | .0227  | .0204  | .01700 | .01457 | .0127   |

Feet Per Pound of Cold Rolled Furnace Strip.

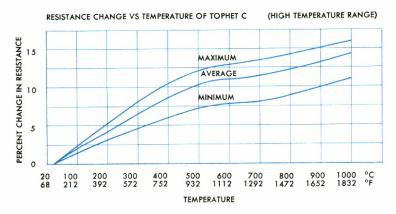
| Thickness |       |       |       | ,     | WIDTH I | N INCHE | S     |      |      |      |
|-----------|-------|-------|-------|-------|---------|---------|-------|------|------|------|
| Inches    | 1/2   | 5/8   | 3/4   | 7∕8   | 1       | 11/8    | 11/4  | 11/2 | 1¾   | 2    |
| .130      | 4.22  | 3.38  | 2.81  | 2.41  | 2.11    | 1.88    | 1.69  | 1.40 | 1.20 | 1.05 |
| .125      | 4.38  | 3.52  | 2.93  | 2.51  | 2.19    | 1.95    | 1.76  | 1.46 | 1.25 | 1.09 |
| .120      | 4.58  | 3.66  | 3.05  | 2.61  | 2.29    | 2.04    | 1.83  | 1.52 | 1.30 | 1.14 |
| .115      | 4.78  | 3.82  | 3.18  | 2.73  | 2.39    | 2.12    | 1.91  | 1.59 | 1.36 | 1.19 |
| .110      | 5.00  | 4.00  | 3.23  | 2.85  | 2.50    | 2.22    | 2.00  | 1.61 | 1.42 | 1.25 |
| .105      | 5.24  | 4.19  | 3.48  | 2.98  | 2.62    | 2.32    | 2.09  | 1.74 | 1.49 | 1.31 |
| .100      | 5.48  | 4.40  | 3.66  | 3.14  | 2.74    | 2.44    | 2.20  | 1.83 | 1.57 | 1.37 |
| .095      | 5.79  | 4.63  | 3.85  | 3.30  | 2.89    | 2.57    | 2.31  | 1.92 | 1.65 | 1.44 |
| .090      | 6.30  | 4.88  | 4.17  | 3.49  | 3.15    | 2.71    | 2.44  | 2.08 | 1.74 | 1.57 |
| .085      | 6.46  | 5.17  | 4.31  | 3.69  | 3.23    | 2.87    | 2.58  | 2.15 | 1.84 | 1.61 |
| .080      | 6.86  | 5.50  | 4.58  | 3.92  | 3.43    | 3.05    | 2.75  | 2.29 | 1.96 | 1.71 |
| .075      | 7.32  | 5.86  | 4.88  | 4.19  | 3.66    | 3.26    | 2.93  | 2.44 | 2.09 | 1.83 |
| .0725     | 7.58  | 6.06  | 5.05  | 4.33  | 3.79    | 3.37    | 3.03  | 2.52 | 2.16 | 1.89 |
| .070      | 7.84  | 6.28  | 5.23  | 4.48  | 3.92    | 3.49    | 3.14  | 2.61 | 2.24 | 1.91 |
| .0675     | 8.14  | 6.51  | 5.42  | 4.65  | 4.07    | 3.62    | 3.25  | 2.71 | 2.32 | 2.03 |
| .065      | 8.44  | 6.76  | 5.64  | 4.83  | 4.22    | 3.76    | 3.38  | 2.82 | 2.41 | 2.11 |
| .0625     | 8.80  | 7.04  | 5.86  | 5.02  | 4.40    | 3.91    | 3.52  | 2.93 | 2.51 | 2.20 |
| .060      | 9.14  | 7.32  | 6.10  | 5.23  | 4.57    | 4.07    | 3.66  | 3.05 | 2.61 | 2.28 |
| .055      | 9.98  | 7.99  | 6.65  | 5.71  | 4.99    | 4.44    | 3.99  | 3.32 | 2.85 | 2.49 |
| .050      | 10.98 | 8.79  | 7.32  | 6.27  | 5.49    | 4.88    | 4.39  | 3.66 | 3.13 | 2.74 |
| .045      | 12.20 | 9.76  | 8.13  | 6.97  | 6.10    | 5.42    | 4.88  | 4.06 | 3.48 | 3.05 |
| .040      | 13.72 | 10.98 | 9.15  | 7.84  | 6.86    | 6.11    | 5.49  | 4.57 | 3.92 | 3.43 |
| .035      | 15.68 | 12.55 | 10.46 | 8.96  | 7.84    | 6.98    | 6.27  | 5.23 | 4.48 | 3.92 |
| .030      | 18.3  | 14.65 | 12.19 | 10.45 | 9.16    | 8.14    | 7.32  | 6.09 | 5.22 | 4.58 |
| .025      | 22.0  | 17.58 | 14.63 | 12.55 | 10.98   | 9.76    | 8.79  | 7.31 | 6.27 | 5.49 |
| .020      | 27.4  | 22.0  | 18.29 | 15.68 | 13.72   | 12.20   | 11.00 | 9.14 | 7.84 | 6.86 |

#### COLD ROLLED FURNACE STRIP

Surface Area in Square Inches Per Lineal Foot.

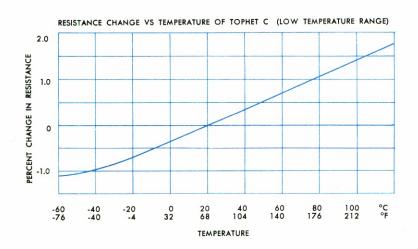
| Thickness |       |       |       | V     | VIDTH IN | INCHES | i     |       |       |       |
|-----------|-------|-------|-------|-------|----------|--------|-------|-------|-------|-------|
| Inches    | 1/2   | 5/8   | 3/4   | 7∕8   | 1        | 11/8   | 11/4  | 11/2  | 1¾    | 2     |
| .130      | 15.12 | 18.12 | 21.12 | 24.12 | 27.12    | 30.12  | 33.12 | 39.12 | 45.12 | 51.12 |
| .125      | 15.00 | 18.00 | 21.00 | 24.00 | 27.00    | 30.00  | 33.00 | 39.00 | 45.00 | 51.00 |
| .120      | 14.88 | 17.88 | 20.88 | 23.88 | 26.88    | 29.88  | 32.88 | 38.88 | 44.88 | 50.88 |
| .115      | 14.76 | 17.76 | 20.76 | 23.76 | 26.76    | 29.76  | 32.76 | 38.76 | 44.76 | 50.76 |
| .110      | 14.64 | 17.64 | 20.64 | 23.64 | 26.64    | 29.64  | 32.64 | 38.64 | 44.64 | 50.64 |
| .105      | 14.52 | 17.52 | 20.52 | 23.52 | 26.52    | 29.52  | 32.52 | 38.52 | 44.52 | 50.52 |
| .100      | 14.40 | 17.40 | 20.40 | 23.40 | 26.40    | 29.40  | 32.40 | 38.40 | 44.40 | 50.40 |
| .095      | 14.28 | 17.28 | 20.28 | 23.28 | 26.28    | 29.28  | 32.28 | 38.28 | 44.28 | 50.28 |
| .090      | 14.16 | 17.16 | 20.16 | 23.16 | 26.16    | 29.16  | 32.16 | 38.16 | 44.16 | 50.16 |
| .085      | 14.04 | 17.04 | 20.04 | 23.04 | 26.04    | 29.04  | 32.04 | 38.04 | 44.04 | 50.04 |
| .080      | 13.92 | 16.92 | 19.92 | 22.92 | 25.92    | 28.92  | 31.92 | 37.92 | 43.92 | 49.92 |
| .075      | 13.80 | 16.80 | 19.80 | 22.80 | 25.80    | 28.80  | 31.80 | 37.80 | 43.80 | 49.80 |
| .0725     | 13.74 | 16.74 | 19.74 | 22.74 | 25.74    | 28.74  | 31.74 | 37.74 | 43.74 | 49.74 |
| .070      | 13.68 | 16.68 | 19.68 | 22.68 | 25.68    | 28.68  | 31.68 | 37.68 | 43.68 | 49.68 |
| .0675     | 13.62 | 16.62 | 19.62 | 22.62 | 25.62    | 28.62  | 31.62 | 37.62 | 43.62 | 49.62 |
| .065      | 13.56 | 16.56 | 19.56 | 22.56 | 25.56    | 28.56  | 31.56 | 37.56 | 43.56 | 49.56 |
| .0625     | 13.50 | 16.50 | 19.50 | 22.50 | 25.50    | 28.50  | 31.50 | 37.50 | 43.50 | 49.50 |
| .060      | 13.44 | 16.44 | 19.44 | 22.44 | 25.44    | 28.44  | 31.44 | 37.44 | 43.44 | 49.44 |
| .055      | 13.32 | 16.32 | 19.32 | 22.32 | 25.32    | 28.32  | 31.32 | 37.32 | 43.32 | 49.32 |
| .050      | 13.20 | 16.20 | 19.20 | 22.20 | 25.20    | 28.20  | 31.20 | 37.20 | 43.20 | 49.20 |
| .045      | 13.08 | 16.08 | 19.08 | 22.08 | 25.08    | 28.08  | 31.08 | 37.08 | 43.08 | 49.08 |
| .040      | 12.96 | 15.96 | 18.96 | 21.96 | 24.96    | 27.96  | 30.96 | 36.96 | 42.96 | 48.96 |
| .035      | 12.84 | 15.84 | 18.84 | 21.84 | 24.84    | 27.84  | 30.84 | 36.84 | 42.84 | 48.84 |
| .030      | 12.72 | 15.72 | 18.72 | 21.72 | 24.72    | 27.72  | 30.72 | 36.72 | 42.72 | 48.72 |
| .025      | 12.60 | 15.60 | 18.60 | 21.60 | 24.60    | 27.60  | 30.60 | 36.60 | 42.60 | 48.60 |
| .020      | 12.48 | 15.48 | 18.48 | 21.48 | 24.48    | 27.48  | 30.48 | 36.48 | 42.48 | 48.48 |

For Surface Areas of Ribbon and Wire see Pages 93 and 92.


Tophet C is a nickel-chromium-iron alloy of 60% Nickel, 16% Chromium and balance Iron. It has excellent heat resisting properties up to  $1700^{\circ}$  F.

 $Tophet\ C$  has earned a reputation as the most suitable element for domestic appliances where operating temperatures do not require the high heat resisting properties of Tophet A.

*Tophet C*, because of its ability to withstand high overloads, is particularly suited for heavy duty rheostats and controls. Because of its high electrical resistance and strength in fine sizes, it is widely used in electronic and other types of resistors where space is a factor.


Tophet C is subjected to the same close control in the manufacturing processes as Tophet A.

Tophet C is supplied both in wire and ribbon with a bright, smooth finish. It is also produced with silk, nylon, cotton, glass, and enamel insulation.



The maximum curve is for SMALL sizes.

For extreme accuracy it is advisable to run tests to determine hot and cold resistance.



The average curve is for MEDIUM popular sizes.

The minimum curve is for HEAVY sizes.

#### Resistance, Weight and Price of Wire

Resistivity 675 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch .2979 Lbs. Specific Gravity 8.247

|                 |       |       |       |       |       |       |       |       |       | 000   | 1000  |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temperature °C. | 20    | 100   | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   | 1000  |
| 1               |       |       |       |       | 752   | 932   | 1112  | 1292  | 1472  | 1652  | 1832  |
| Temperature °F. | 68    | 212   | 392   | 572   | 154   |       |       |       |       |       |       |
| Factor          | 1.000 | 1.019 | 1.043 | 1.065 | 1.085 | 1.093 | 1.110 | 1.114 | 1.123 | 1.132 | 1.143 |

\*These figures will vary slightly with various sizes of wire due to rate of cooling.

| B & S    | Dia. in<br>Inches | Ohms Per Ft.<br>at 68°F. (20°C.) | Ohms Per Pound<br>Bare Wire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Feet Per Pound<br>Bare Wire | Pounds Per<br>M Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | List Price<br>Per Pound<br>Bare Wire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000      | 410               | .004015                          | .008507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.119                       | 472.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 000      | .410<br>.365      | .005067                          | .01354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.673                       | 374.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00       | .325              | .006391                          | .02155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.372                       | 296.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0        |                   | .008082                          | .03446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.264                       | 234.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1        | .289              |                                  | . 05425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.350                       | 186.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2        | .258              | .01014                           | The second secon |                             | NAME AND ADDRESS OF THE OWNER, WHEN PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE PERSON NAMED IN COLUMN 2 ADDRESS OF THE OWNER, WHEN THE OWNER, WHE | THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME |
| 3        | .229              | .01287                           | . 08737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.789                       | 147.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28<br>2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4        | .204              | .01622                           | . 1387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.554                       | 116.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5        | .182              | .02038                           | . 2191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.75                       | 93.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28<br>2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6        | .162              | .02572                           | . 3490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.57                       | 73.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7        | .144              | . 03255                          | . 5589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.17                       | 58.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8        | .128              | .04120                           | .8957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.74                       | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.28<br>2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9        | .114              | .05194                           | 1.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.40                       | 36.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10       | .102              | .06488                           | 2.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.23                       | 29.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11       | .091              | .08151                           | 3.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.01                       | 23.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12       | .081              | .1029                            | 5.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.29                       | 18.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | .072              | .1302                            | 8.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.68                       | 14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13       |                   |                                  | 14.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.96                       | 11.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14       | .064              | .1648                            | 14.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.6                       | 9.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15       | .057              | .2078                            | 22.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16       | .051              | . 2595                           | 35.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 136.9                       | 7.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17       | .045              | . 3333                           | 58.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175.9                       | 5.686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18       | .040              | . 4219                           | 93.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222.6                       | 4.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19       | .036              | . 5208                           | 143.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 274.8                       | 3.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20       | .032              | . 6592                           | 229.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 347.8                       | 2.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21       | .0285             | .8310                            | 364.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 438.4                       | 2.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22       | .0253             | 1.055                            | 587.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 556.5                       | 1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23       | .0226             | 1.322                            | 921.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 697.4                       | 1.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24       | .0220             | 1.671                            | 1,473.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 881.8                       | 1.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25       | .0201             | 2.107                            | 2,341.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,111.                      | .8997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                   | 2.670                            | 3,773.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,413.                      | .7099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26<br>27 | .0159<br>.0142    | 3.348                            | 5,913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,766.                      | .5662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28       | .0126             | 4.251                            | 9,535.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,243.                      | . 4458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29       | .0113             | 5.286                            | 14,740.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,789.                      | .3586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30       | .010              | 6.750                            | 24,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,561.                      | . 2808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31       | .0089             | 8.523                            | 38,320.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,496.                      | . 2224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 32       | .008              | 10.55                            | 58,710.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,565.                      | .1797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33       | .0071             | 13.39                            | 9 <b>4,5</b> 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,062                       | . 1416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 34       | .0063             | 17.00                            | 152,600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,977.                      | .1114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 35       | .0056             | 21.52                            | 244,500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11,360.                     | . 08806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36       | .005              | 27.00                            | 384,800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14,250.                     | . 07020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37       | .0045             | 33.33                            | 586,300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17,590                      | . 05686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 38       | .004              | 42.19                            | 939,100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22,260.                     | . 04493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39       | .0035             | 55.10                            | 1,602,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29,070.                     | .03440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40       | .0033             | 70.24                            | 2,603,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37,060                      | .02698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40       | .00275            | 89.29                            | 4,204,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47,080                      | .02124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | .00213            | 108.0                            | 6,154,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56,980                      | .01755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | .00225            | 133.4                            | 9,381,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70,320.                     | .01422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                   |                                  | 15,030,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89,050 .                    | .01123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | .002              | 168.8                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116,300                     | .00860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | .00175            | 220.6                            | 25,656,000 .<br>47,490,000 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158,300                     | .006318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | .0015             | 300.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181,700.                    | .005504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | .0014             | 344.4                            | 62,580,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | .0013             | 399.4                            | 84,150,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 210,700.                    | .004746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | .0012             | 468.7                            | 115,900,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 247,300.                    | .004044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 136.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | .0011             | 557.8                            | 164,200,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 294,300.                    | .003398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | .001              | 675.0                            | 240,400,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 356,100.                    | .002808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 212.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | .0009             | 833.3                            | 366,000,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 439,000.                    | .002277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 261.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | .0008             | 1,054.6                          | 587,000,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 557,000.                    | .001796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 339.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | .0007             | 1,377.5                          | 1,002,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 727,000                     | .001378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 433.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Current Temperature Characteristics of Straight Wire

Chart Shows Amperes Necessary to Raise to a Given Temperature, a Straight Wire in Air.

| B&S                        | Dia. in<br>Inches                           | 100<br>212                             | 200<br>392                                | 300<br>572                            | 400<br>752                             | 500<br>932                              | 600<br>1112                               | 700<br>1292                                                         | 800<br>1472                                    | 900<br>1652                               | 1000<br>1832                              | 1100°C.<br>2012°F.                        |
|----------------------------|---------------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5      | .289<br>.258<br>.229<br>.204<br>.182        |                                        | 74.5<br>61.7<br>51.0<br>43.2<br>36.6      | 101.0<br>85.2<br>71.5<br>60.5<br>50.8 | 128.5<br>107.9<br>90.2<br>75.4<br>64.2 | 157.9<br>132.2<br>112.8<br>94.0<br>79.6 | 194.0<br>162.8<br>136.3<br>115.0<br>95.0  | 233.0<br>196.0<br>165.8<br>139.0<br>115.8                           | 279 .3<br>235 .3<br>194 .0<br>163 .2<br>138 .1 | 328.5<br>275.5<br>233.3<br>194.2<br>163.2 | 376.0<br>318.5<br>264.5<br>223.0<br>186.2 | 426.0<br>360.0<br>301.0<br>251.0<br>213.0 |
| 6<br>7<br>8<br>9           | .162<br>.144<br>.128<br>.114<br>.102        |                                        | 30.4<br>25.5<br>21.7<br>18.3<br>16.0      | 41.8<br>35.6<br>29.8<br>25.5<br>21.7  | 53.4<br>45.0<br>37.9<br>32.4<br>27.6   | 66.1<br>55.8<br>45.6<br>39.2<br>33.3    | 80.0<br>67.6<br>57.4<br>48.7<br>40.7      | 97.6<br>81.9<br>69.6<br>58.5<br>49.0                                | 115.8<br>97.7<br>80.8<br>69.6<br>58.3          | 136.8<br>113.8<br>94.5<br>80.4<br>68.6    | 157.0<br>132.4<br>110.9<br>93.7<br>79.9   | 180.0<br>149.0<br>125.0<br>106.0<br>88.5  |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064<br>.057        |                                        | 13.6<br>11.8<br>10.1<br>8.9<br>7.8        | 18.1<br>15.5<br>13.2<br>11.4<br>9.8   | 22.7<br>19.4<br>16.7<br>14.5<br>12.5   | 27.9<br>23.7<br>20.2<br>17.3<br>14.8    | 33.4<br>29.0<br>23.5<br>20.6<br>17.9      | $\begin{array}{c} 41.7 \\ 34.1 \\ 29.0 \\ 24.7 \\ 21.1 \end{array}$ | 49.1<br>41.8<br>34.1<br>29.1<br>24.8           | 58.4 $48.5$ $40.2$ $34.1$ $29.0$          | 67.0<br>56.3<br>44.6<br>37.2<br>33.6      | 75.4<br>64.6<br>51.9<br>44.0<br>37.4      |
| 16<br>17<br>18<br>19<br>20 | .051<br>.045<br>.040<br>.036<br>.032        |                                        | 6.86<br>5.97<br>5.15<br>4.41<br>3.77      | 8.62<br>7.43<br>6.33<br>5.40<br>4.61  | 10.8<br>9.20<br>7.82<br>6.65<br>5.68   | 12.60<br>11.00<br>9.30<br>7.95<br>6.75  | 15.3<br>13.0<br>11.1<br>9.44<br>8.04      | 17.9<br>15.3<br>13.0<br>11.1<br>9.50                                | 21.2<br>17.9<br>15.4<br>13.1<br>11.2           | 24.5<br>21.1<br>17.9<br>15.3<br>13.0      | 28.6<br>24.4<br>20.8<br>17.7<br>15.1      | 32.9<br>27.2<br>23.1<br>20.0<br>17.0      |
| 21<br>22<br>23<br>24<br>25 | .0285<br>.0253<br>.0226<br>.0201<br>.0179   | 2.51<br>2.16<br>1.86<br>1.65<br>1.40   | 3.23<br>2.79<br>2.40<br>2.12<br>1.81      | 3.97<br>3.48<br>3.04<br>2.69<br>2.30  | 4.85<br>4.16<br>3.62<br>3.33<br>2.84   | 5.78<br>5.00<br>4.36<br>3.82<br>3.33    | 6.95<br>5.87<br>5.00<br>4.55<br>3.92      | 8.13<br>7.15<br>6.17<br>5.29<br>4.55                                | 9.65<br>8.22<br>7.15<br>6.22<br>5.34           | 11.00<br>9.40<br>8.20<br>7.10<br>6.16     | 12.80<br>10.95<br>9.50<br>8.14<br>7.01    | 14.50<br>12.35<br>10.70<br>9.20<br>7.90   |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113<br>.010    | 1.220<br>1.050<br>.915<br>.814<br>.685 | 1.58<br>1.36<br>1.18<br>1.06<br>.881      | 1.96<br>1.71<br>1.50<br>1.32<br>1.13  | 2.43<br>2.09<br>1.80<br>1.59<br>1.37   | 2.84<br>2.50<br>2.14<br>1.91<br>1.63    | 3.33<br>2.89<br>2.55<br>2.25<br>1.93      | 3.87<br>3.45<br>2.98<br>2.59<br>2.23                                | 4.56<br>3.97<br>3.48<br>3.06<br>2.62           | 5.30<br>4.60<br>3.98<br>3.38<br>2.90      | 5.97<br>5.20<br>4.46<br>3.91<br>3.35      | 6.75<br>5.83<br>5.00<br>4.36<br>3.72      |
| 31<br>32<br>33<br>34<br>35 | .0089<br>.008<br>.0071<br>.0063<br>.0056    | .572<br>.490<br>.432<br>.351<br>.323   | . 755<br>. 646<br>. 565<br>. 490<br>. 421 | .970<br>.843<br>.715<br>.617          | 1.20<br>1.03<br>.900<br>.775<br>.665   | 1 .37<br>1 .19<br>1 .03<br>.900<br>.784 | 1.64<br>1.39<br>1.19<br>1.04<br>.901      | 1 93<br>1 66<br>1 39<br>1 29<br>1 05                                | 2.23<br>1.91<br>1.63<br>1.39<br>1.22           | 2.50<br>2.18<br>1.81<br>1.57<br>1.34      | 2.86<br>2.46<br>2.10<br>1.79<br>1.54      | 3.17<br>2.71<br>2.32<br>1.98<br>1.69      |
| 36<br>37<br>38<br>39<br>40 | .005<br>.0045<br>.004<br>.0035<br>.0031     | .273<br>.235<br>.204<br>.186<br>.165   | .361<br>.314<br>.274<br>.245<br>.216      | .480<br>.422<br>.372<br>.333<br>.284  | .577<br>.510<br>.441<br>.382<br>.333   | .510                                    | . 784<br>. 686<br>. 600<br>. 510<br>. 441 | .814<br>.695<br>.597                                                | 1.06<br>.910<br>.794<br>.676<br>.578           | 1.18<br>1.03<br>.881<br>.755<br>.637      | 1.31<br>1.14<br>.980<br>.842<br>.715      | .91                                       |
|                            | .00275<br>.0025<br>.00225<br>.002<br>.00175 | .147<br>.127<br>.113<br>.098<br>.086   | .194<br>.180<br>.159<br>.138              | .240<br>.212<br>.183<br>.169<br>.139  |                                        |                                         |                                           |                                                                     |                                                |                                           |                                           |                                           |
|                            | .00150<br>.00125<br>.001                    | .077<br>.069<br>.059                   | .100<br>.088<br>.078                      | . 122<br>. 108<br>. 095               | .129                                   |                                         |                                           |                                                                     |                                                |                                           |                                           |                                           |

#### Current Temperature Characteristics of Coiled Wire

Chart shows amperes necessary to raise to a given temperature in air, a coil of stated arbor size when stretched twice the close-wound length.

| B & S | Dia. in<br>Inches | Arbor<br>Size   | 200<br>392 | 300<br>572 | 400<br>752 | 500<br>932 | 600<br>1112 | 700<br>1292 | 800<br>1472 | 900<br>1652 | 1000<br>1832 | 1100 °C.<br>2012 °F. |
|-------|-------------------|-----------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|--------------|----------------------|
| 11    | .091              | 3/16            | 8.20       | 12.0       | 16.0       | 20.8       | 25.5        | 31.0        | 37.0        | 42.7        | 49.5         | 57.0                 |
| 12    | .081              | 3/16            | 7.00       | 10.0       | 13.3       | 17.0       | 21.8        | 26.1        | 31.5        | 36.2        | 42.0         | 48.0                 |
| 13    | .072              | 3/16            | 5.90       | 8.4        | 11.2       | 14.5       | 18.0        | 22.0        | 26.5        | 30.3        | 35.0         | 40.5                 |
| 14    | .064              | 3/16            | 4.95       | 7.1        | 9.6        | 12.2       | 15.2        | 18.7        | 22.1        | 25.3        | 29.5         | 34.0                 |
| 15    | .057              | <sup>3</sup> 16 | 4.10       | 6.0        | 8.0        | 10.2       | 12.9        | 15.5        | 18.5        | 21.3        | 24.7         | 28.0                 |
| 16    | .051              | 3/16            | 3.45       | 5.00       | 6.60       | 8.60       | 10.8        | 13.0        | 15.6        | 18.0        | 21.0         | 24.0                 |
| 17    | .045              | 3/16            | 2.85       | 4.10       | 5.50       | 7.20       | 9.00        | 10.8        | 13.0        | 15.0        | 17.5         | 20.0                 |
| 18    | .040              | 1/8             | 2.35       | 3.30       | 4.50       | 5.80       | 7.40        | 9.00        | 10.8        | 12.7        | 15.0         | 16.7                 |
| 19    | .036              | 1/8             | 1.94       | 2.80       | 3.70       | 4.90       | 6.20        | 7.60        | 9.20        | 10.8        | 12.8         | 14.0                 |
| 20    | .032              | 1/8             | 1.60       | 2.30       | 3.10       | 4.10       | 5.20        | 6.40        | 7.80        | 9.20        | 10.8         | 12.0                 |
| 21    | .0285             | 1/8             | 1.35       | 1.90       | 2.60       | 3.40       | 4.40        | 5.40        | 6.50        | 7.60        | 9.00         | 10.0                 |
| 22    | .0253             | 1/8             | 1.12       | 1.60       | 2.20       | 2.90       | 3.70        | 4.50        | 5.50        | 6.40        | 7.60         | 8.50                 |
| 23    | .0226             | 1/8             | .940       | 1.30       | 1.80       | 2.40       | 3.10        | 3.80        | 4.60        | 5.50        | 6.40         | 7.10                 |
| 24    | .0201             | 1/8             | .780       | 1.10       | 1.50       | 2.00       | 2.60        | 3.20        | 3.90        | 4.60        | 5.40         | 6.00                 |
| 25    | .0179             | 1/8             | . 650      | .970       | 1.30       | 1.70       | 2.20        | 2.70        | 3.30        | 3.90        | 4.50         | 5.10                 |
| 26    | .0159             | 1/8             | .540       | .800       | 1.10       | 1.40       | 1.80        | 2.30        | 2.80        | 3.30        | 3.80         | 4.30                 |
| 27    | .0142             | 1/8             | . 450      | . 660      | .920       | 1.20       | 1.50        | 1.90        | 2.30        | 2.70        | 3.20         | 3.60                 |
| 28    | .0126             | 1/8             | .380       | . 560      | .760       | 1.00       | 1.30        | 1.60        | 1.90        | 2.20        | 2.60         | 3.00                 |
| 29    | .0113             | 1/8             | .320       | . 460      | . 640      | .840       | 1.10        | 1.30        | 1.60        | 1.90        | 2.20         | 2.50                 |
| 30    | .010              | 1/8             | .260       | .380       | . 530      | . 700      | .900        | 1.10        | 1.40        | 1.60        | 1.90         | 2.10                 |
| 31    | .0089             | 1/16            | . 200      | .300       | . 420      | . 570      | . 730       | .910        | 1.10        | 1.30        | 1.60         | 1.80                 |
| 32    | .008              | 1/16            | .160       | .240       | .340       | . 460      | . 600       | .760        | .920        | 1.10        | 1.30         | 1.50                 |
| 33    | .0071             | 1/16            | .130       | . 190      | . 280      | .370       | . 490       | . 620       | .760        | .900        | 1.10         | 1.20                 |
| 34    | .0063             | 1/16            | .099       | . 150      | . 220      | .300       | . 400       | . 500       | . 630       | .740        | .880         | 1.00                 |
| 35    | .0056             | 1/16            | .071       | . 120      | .180       | . 250      | .320        | . 420       | .520        | .620        | .730         | .850                 |
| 36    | .005              | 1/32            | .064       | .100       | .150       | .200       | . 270       | . 350       | . 430       | .510        | .610         | .700                 |
| 37    | .0045             | 1/32            | .053       | .084       | .120       | .170       | .220        | . 280       | . 360       | . 420       | . 500        | .580                 |
| 38    | .004              | 1/32            | .044       | .070       | .100       | .140       | . 190       | .240        | .300        | .350        | . 420        | . 480                |
| 39    | .0035             | 1/32            | .037       | .059       | .084       | .120       | . 150       | . 200       | . 250       | . 290       | . 350        |                      |
| 40    | .0031             | 1/32            | .031       | . 050      | .070       | .100       | . 130       | .160        | .210        | . 250       | . 290        | .330                 |

Resistance of Ribbon in Ohms Per Foot at 20°C. (68°F.) Resistivity = 530 Ohms Per Square Mil Foot at 20°C. (68°F.)

| Thi                        | ckness                                    |                                           |                                                     |                                           |                                           |                                           | WID                                       | TH IN I                                        | ICHES                                          |                                                |                                                |                                                  |                                                    |                                                     |
|----------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| B & S                      | Inches                                    | 1/64<br>.015625                           | 1/32<br>.03125                                      | 3%4<br>.046875                            | ½6<br>.0625                               | ³⁄₃₂<br>.09375                            | ½<br>.125                                 | 3/16<br>.1875                                  | ¾<br>.250                                      | 38<br>.375                                     | ½<br>.500                                      | 58<br>.625                                       | ¾<br>.750                                          | 1″<br>1.000                                         |
| 10<br>11<br>12<br>13<br>14 | .102<br>.091<br>.081<br>.072<br>.064      |                                           |                                                     |                                           |                                           |                                           |                                           | . 04699                                        | .02211<br>.02478<br>.02784<br>.03132<br>.03524 | .01386<br>.01553<br>.01745<br>.01963<br>.02208 | .01039<br>.01165<br>.01309<br>.01472<br>.01656 | .008314<br>.009319<br>.01047<br>.01178<br>.01325 | .006928<br>.007766<br>.008724<br>.009815<br>.01104 | .005196<br>.005824<br>.006543<br>.007361<br>.008281 |
| 15<br>16<br>17<br>18<br>19 | .057<br>.051<br>.045<br>.040<br>.036      |                                           |                                                     |                                           |                                           |                                           | .1128                                     | .05276<br>.05897<br>.06682<br>.07518<br>.08350 | .03957<br>.04422<br>.05012<br>.05638<br>.06265 | .02480<br>.02771<br>.03141<br>.03533<br>.03926 | .01860<br>.02078<br>.02356<br>.02650<br>.02944 | .01488<br>.01663<br>.01884<br>.02120<br>.02356   | .01240<br>.01386<br>.01570<br>.01767<br>.01963     | .009298<br>.01039<br>.01178<br>.01325<br>.01472     |
| 20<br>21<br>22             | .032<br>.0285<br>.0253                    |                                           |                                                     |                                           |                                           |                                           | .1410<br>.1583<br>.1783                   | .09397<br>.1055<br>.1189                       | .07048<br>.07914<br>.08915                     | .04417<br>.04959<br>.05586                     | .03313<br>.03719<br>.04190                     | .02650<br>.02975<br>.03352                       | .02208<br>.02480<br>.02793                         | .01656<br>.01860<br>.02095                          |
| 23<br>24                   | .0226<br>.0201                            |                                           |                                                     | . 5984                                    | . 4488                                    | .2992                                     | .1996<br>.2244                            | 1251<br>1406                                   | .09381<br>.1055                                | .06254<br>.07032                               | .04690<br>.05274                               | 03752 $04219$                                    | .0312 <b>7</b><br>.03516                           | . 02345<br>. 0263 <b>7</b>                          |
| 25<br>26<br>27<br>28<br>29 | .0179<br>.0159<br>.0142<br>.0126<br>.0113 |                                           |                                                     | .6720<br>.7565<br>.8471<br>.9546<br>1.064 | .5040<br>.5674<br>.6353<br>.7160<br>.7983 | .3360<br>.3783<br>.4235<br>.4773<br>.5322 | .2520<br>.2837<br>.3177<br>.3580<br>.3992 | .1579<br>.1778<br>.1991<br>.2243<br>.2501      | .1184<br>.1333<br>.1493<br>.1683<br>.1876      | .07896<br>.08889<br>.09953<br>.1122<br>.1251   | .05922<br>.06667<br>.07465<br>.08413<br>.09381 | .04737<br>.05333<br>.05972<br>.06730<br>.07504   | .03948<br>.04444<br>.04977<br>.05608<br>.06254     | .02961<br>.03333<br>.03732<br>.04206<br>.04690      |
| 30<br>31<br>32<br>33<br>34 | .010<br>.0089<br>.008<br>.0071<br>.0063   | 3.609<br>4.055<br>4.511<br>5.082<br>5.728 | 1.804<br>2.027<br>2.255<br>2.541<br>2.864           | 1.203<br>1.352<br>1.504<br>1.694<br>1.909 | .9021<br>1.014<br>1.128<br>1.271<br>1.432 | .6014<br>.6758<br>.7518<br>.8471<br>.9546 | .4511<br>.5068<br>.6386<br>.7195<br>.8109 | .2827<br>.3176<br>.3533<br>.3981<br>.4487      | .2120<br>.2382<br>.2650<br>.2986<br>.3365      | .1413<br>.1588<br>.1767<br>.1991<br>.2243      | .1060<br>.1191<br>.1325<br>.1493<br>.1683      | .08480<br>.09528<br>.1060<br>.1194<br>.1346      | .07067<br>.07940<br>.08833<br>.09953<br>.1122      | .05300<br>.05955<br>.06625<br>.07465<br>.08413      |
| 35<br>36<br>37<br>38<br>39 | .0056<br>.005<br>.0045<br>.004<br>.0035   | 6.444<br>7.217<br>8.019<br>9.021<br>10.31 | 3 . 222<br>3 . 609<br>4 . 009<br>4 . 511<br>5 . 155 | 2.148<br>2.406<br>2.673<br>3.007<br>3.437 | 1.611<br>1.804<br>2.005<br>2.554<br>2.919 | 1.216<br>1.362<br>1.514<br>1.703<br>1.946 | .9122<br>1.022<br>1.135<br>1.277<br>1.460 | .5048<br>.5653<br>.6281<br>.7067<br>.8076      | 3786<br>4240<br>4711<br>5300<br>6057           | .2524<br>.2827<br>.3141<br>.3533<br>.4038      | .1893<br>.2120<br>.2356<br>.2650<br>.3029      | .1514<br>.1696<br>.1884<br>.2120<br>.2423        | .1262<br>.1413<br>.1570<br>.1767<br>.2019          | .09464<br>.1060<br>.1178<br>.1325<br>.1514          |
| 40                         | .0031<br>.00275<br>.0025<br>.00225        | 11.64<br>13.12<br>14.43<br>16.04<br>18.04 | 5.820<br>6.560<br>7.217<br>8.019                    | 4.394<br>4.954<br>5.449<br>6.054<br>6.811 | 3.296<br>3.715<br>4.087<br>4.541<br>5.108 | 2.197<br>2.477<br>2.725<br>3.027<br>3.406 | 1.648<br>1.858<br>2.044<br>2.271<br>2.554 | .9118<br>1.028<br>1.131<br>1.256<br>1.413      | .6839<br>.7709<br>.8480<br>.9422<br>1.060      | .4559<br>.5139<br>.5653<br>.6281<br>.7067      | .3419<br>.3855<br>.4240<br>.4711<br>.5300      | 2735<br>3084<br>3392<br>3769<br>4240             | .2280<br>.2570<br>.2827<br>.3141<br>.3533          | .1710<br>.1927<br>.2120<br>.2356<br>.2650           |
|                            | .00175<br>.0015<br>.00125<br>.001         | 20.62<br>24.06<br>28.87<br>40.87          | 11.68<br>13.62<br>16.35<br>20.43                    | 7.784<br>9.082<br>10.90<br>13.62          | 5.838<br>6.811<br>8.174<br>10.22          | 3.892<br>4.541<br>5.449<br>6.811          | 2.919<br>3.406<br>4.087<br>5.108          | 1.615<br>1.884<br>2.261<br>2.827               | 1.211<br>1.413<br>1.696<br>2.120               | .8076<br>.9422<br>1.131<br>1.413               | .6057<br>.7067<br>.8480<br>1.060               | .4846<br>.5653<br>.6784<br>.8480                 | .4038<br>.4711<br>.5653<br>.7067                   | .3029<br>.3533<br>.4240<br>.5300                    |

All sizes to the left of the double line are rolled with round edges. Resistances of these sizes are calculated according to the method advocated by the American Society for Testing Materials. That is, if the width to thickness ratio of a round edged strip is less than 15 to 1, the cross sectional area shall be considered 6% less than a true rectangle when calculating the resistance.

If the width to thickness ratio is greater than 15 to 1, the cross sectional area shall be considered 17% less than a true rectangle.

Resistances to the right of the double line are figured for square edged strip.

All resistances below the solid black line are for sizes with a width to thickness ratio greater than 15 to 1.

# TOPHET C°

Feet Per Pound of Ribbon

| Thick | kness  |         |        |                |       |                | WI    | DTH IN                    | INCHES    |                       |       |       |           |             |
|-------|--------|---------|--------|----------------|-------|----------------|-------|---------------------------|-----------|-----------------------|-------|-------|-----------|-------------|
| B&S   | Inches | .015625 | .03125 | 3%4<br>.046875 | .0625 | 3/32<br>.09375 | .125  | <sup>3</sup> ⁄16<br>.1875 | ½<br>.250 | <sup>36</sup><br>.375 | .500  | .625  | ¾<br>.750 | 1″<br>1.000 |
| 10    | .102   |         |        |                |       |                |       |                           | 11.67     | 7.317                 | 5.484 | 4.387 | 3.656     | 2.742       |
| 11    | .091   |         |        |                |       |                |       |                           | 13.08     | 8.200                 | 6.149 | 4.918 | 4.098     | 3.07        |
| 12    | .081   |         |        |                |       |                |       |                           | 14.70     | 9.206                 | 6.905 | 5.525 | 4.605     | 3.45        |
| 13    | .072   |         |        |                |       |                |       | 22.35                     | 16.53     | 10.36                 | 7.768 | 6.216 | 5.181     | 3.88        |
| 14    | .064   |         |        |                |       |                |       | 24.80                     | 18.59     | 11.66                 | 8.740 | 6.991 | 5.828     | 4.37        |
| 15    | .057   |         |        |                |       |                |       | 27.84                     | 20.88     | 13.09                 | 9.818 | 7.852 | 6.542     | 4.90        |
| 16    | .051   |         |        |                |       |                |       | 31.12                     | 23.34     | 14.63                 | 10.97 | 8.778 | 7.311     | 5.48        |
| 17    | .045   |         |        |                |       |                |       | 35.27                     | 26.45     | 16.58                 | 12.43 | 9.942 | 8.285     | 6.21        |
| 18    | .040   |         |        |                |       |                | 59.51 | 39.68                     | 29.75     | 18.65                 | 13.98 | 11.19 | 9.324     | 6.99        |
| 19    | .036   |         |        |                |       |                | 66.11 | 44.08                     | 33.06     | 20.72                 | 15.53 | 12.43 | 10.36     | 7.76        |
| 20    | .032   |         |        |                |       |                | 74.40 | 49.58                     | 37.20     | 23.31                 | 17.48 | 13.98 | 11.66     | 8.74        |
| 21    | .0285  |         |        |                |       |                | 83.54 | 55.68                     | 41.77     | 26.19                 | 19.62 | 15.70 | 13.09     | 9.81        |
| 22    | .0253  |         |        |                |       |                | 94.10 | 62.73                     | 47.05     | 29.48                 | 22.11 | 17.69 | 14.74     | 11.06       |
| 23    | .0226  |         |        |                |       |                | 105.4 | 66.01                     | 49.51     | 33.00                 | 24.76 | 19.80 | 16.50     | 12.37       |
| 24    | .0201  |         | 473.7  | 315.8          | 236.8 | 157.9          | 118.4 | 74.24                     | 55.65     | 37.11                 | 27.84 | 22.27 | 18.55     | 13.9        |
| 25    | .0179  |         | 532.0  | 354.7          | 266.0 | 177.3          | 133.0 | 83.33                     | 62.50     | 41.67                 | 31.25 | 25.00 | 20.83     | 15.63       |
| 26    | .0159  |         | 598.7  | 399.2          | 299.4 | 199.6          | 149.7 | 93.84                     | 70.35     | 46.92                 | 35.18 | 28.14 | 23 . 45   | 17.60       |
| 27    | .0142  |         | 670.5  | 447.0          | 335.3 | 223.5          | 167.6 | 105.1                     | 78.76     | 52.52                 | 39.39 | 31.51 | 26.27     | 19.70       |
| 28    | .0126  |         | 755.6  | 503.7          | 377.8 | 251.9          | 188.9 | 118.4                     | 88.77     | 59.20                 | 44.41 | 35.52 | 29.60     | 22.20       |
| 29    | .0113  |         | 842.7  | 561.7          | 421.4 | 266.2          | 210.6 | 132.0                     | 99.03     | 66.01                 | 49.51 | 39.60 | 33.00     | 24.70       |
| 30    | .010   | 1904.   | 952.4  | 634.7          | 475.9 | 317.3          | 238.1 | 149.1                     | 111.9     | 74.56                 | 55.95 | 44.76 | 37.29     | 27.9        |
| 31    | .0089  | 2140.   | 1070.  | 713.3          | 534.9 | 356.7          | 267.4 | 167.6                     | 125.7     | 83.81                 | 62.84 | 50.28 | 41.90     | 31.4        |
| 32    | .008   | 2381.   | 1190.  | 793.2          | 595.1 | 396.8          | 337.0 | 186.5                     | 139.8     | 93.24                 | 69.91 | 55.95 | 46.61     | 34.9        |
| 33    | .0071  | 2683.   | 1341   | 893.9          | 670.7 | 447.0          | 379.7 | 210.1                     | 157.6     | 105.1                 | 78.76 | 63.04 | 52.52     | 39.39       |
| 34    | .0063  | 3023.   | 1512.  | 1008.          | 755.5 | 503.7          | 427.9 | 236.7                     | 177.6     | 118.4                 | 88.77 | 71.03 | 59.20     | 44.4        |
| 35    | .0056  | 3401.   | 1700.  | 1133.          | 850.0 | 641.9          | 481.3 | 266.4                     | 199.7     | 133.2                 | 99.90 | 79.94 | 66.58     | 49.9        |
| 36    | .005   | 3809.   | 1904.  | 1270.          | 952.4 | 718.8          | 539.1 | 298.4                     | 223.7     | 149.1                 | 111.9 | 89.47 | 74.56     | 55.9        |
| 37    | .0045  | 4232.   | 2115.  | 1411.          | 1058. | 798.8          | 598.9 | 331.5                     | 248.6     | 165.8                 | 124.3 | 99.42 | 82.85     | 62.1        |
| 38    | .004   | 4762.   | 2382.  | 1587.          | 1348. | 898.7          | 674.1 | 372.9                     | 279.7     | 186.5                 | 139.8 | 111.9 | 93.24     | 69.9        |
| 39    | .0035  | 5440.   | 2720.  | 1814.          | 1540. | 1027.          | 770.4 | 426.3                     | 319.7     | 213.1                 | 159.8 | 127.9 | 106.6     | 79.9        |
| 40    | .0031  | 6144.   | 3072.  | 2319.          | 1739. | 1160.          | 869.6 | 481.1                     | 361.0     | 240.6                 | 180.4 | 144.3 | 120.3     | 90.1        |
|       | .00275 | 6925.   | 3462.  | 2614.          | 1960. | 1308.          | 980.7 | 542.5                     | 406.9     | 271.2                 | 203.4 | 162.7 | 135.6     | 101.7       |
|       | .0025  | 7617.   | 3809.  | 2875.          | 2157. | 1438.          | 1078. | 596.8                     | 447.6     | 298.4                 | 223.7 | 179.0 | 149.1     | 111.9       |
|       | .00225 |         | 4228.  | 3196.          | 2397. | 1597.          | 1199. | 663.2                     | 497.4     | 331.5                 | 248.6 | 198.9 | 165.8     | 124.3       |
|       | .002   | 9524.   | 5391.  | 3594.          | 2696. | 1797.          | 1348. | 745.6                     | 559.5     | 372.9                 | 279.7 | 223.7 | 186.5     | 139.8       |
|       | .00175 | 10883.  | 6163.  | 4108.          | 3081. | 2054.          | 1540. | 852.1                     | 639.5     | 426.3                 | 319.7 | 255.7 | 213.1     | 159.8       |
|       | .0015  | 12699.  | 7188.  | 4793.          | 3594. | 2397.          | 1797. | 994.2                     | 745.6     | 497.4                 | 372.9 | 298.4 | 248.6     | 186.5       |
|       |        | 15239.  |        | 5750.          | 4313. | 2875.          | 2157. | 1139.0                    | 894.7     | 596.8                 | 447.6 | 358.0 | 298.4     | 223.7       |
|       | .001   | 21573.  | 10781. | 7188.          | 5391. | 3594.          | 2696. | 1491.0                    | 1119.0    | 745.6                 | 559.5 | 447.6 | 372.9     | 279.7       |

List Price Per Pound of Ribbon

| Thic  | kness  |               |        |         | W     | IDTH IN    | INCHES        |           |            |           |            |
|-------|--------|---------------|--------|---------|-------|------------|---------------|-----------|------------|-----------|------------|
| B & S | Inches | 1/64<br>.0156 | .03125 | .046875 | .0625 | ½<br>.1250 | 3/16<br>.1875 | ½<br>.250 | ³8<br>.375 | ½<br>.500 | ¾ to<br>1¾ |
| 14    | .064   |               |        |         |       |            | 2.96          | 2.96      | 2.96       | 2.80      | 2.80       |
| 15    | .057   |               |        |         |       |            | 2.96          | 2.96      | 2.96       | 2.88      | 2.88       |
| 16    | .051   |               |        |         |       |            | 2.96          | 2.96      | 2.96       | 2.88      | 2.88       |
| 17    | .045   |               |        |         |       |            | 2.96          | 2.96      | 2.96       | 2.88      | 2.88       |
| 18    | .040   |               |        |         |       |            | 2.96          | 2.96      | 2.96       | 2.96      | 2.96       |
| 19    | .036   |               |        |         |       |            | 3.06          | 2.96      | 2.96       | 2.96      | 2.96       |
| 20    | .032   |               |        |         |       | 3.56       | 3.14          | 3.06      | 3.06       | 3.06      | 3.06       |
| 21    | .0285  |               |        |         |       | 3.56       | 3.22          | 3.14      | 3.14       | 3.14      | 3.14       |
| 22    | .0253  |               |        |         |       | 3.56       | 3.30          | 3.22      | 3.22       | 3.22      | 3.22       |
| 23    | .0226  |               |        |         |       | 3.56       | 3.40          | 3.30      | 3.30       | 3.30      | 3.30       |
| 24    | .0201  |               |        | 4.38    | 3.64  | 3.56       | 3.48          | 3.40      | 3.40       | 3.40      | 3.40       |
| 25    | .0179  |               |        | 4.50    | 3.74  | 3.64       | 3.56          | 3.48      | 3.48       | 3.48      | 3.48       |
| 26    | .0159  |               |        | 4.58    | 3.82  | 3.74       | 3.64          | 3.56      | 3.56       | 3.56      | 3.56       |
| 27    | .0142  |               |        | 4.68    | 3.90  | 3.82       | 3.74          | 3.64      | 3.64       | 3.64      | 3.64       |
| 28    | .0126  |               |        | 4.88    | 4.08  | 3.90       | 3.82          | 3.74      | 3.74       | 3.74      | 3.74       |
| 29    | .0113  |               |        | 5.10    | 4.24  | 3.98       | 3.90          | 3.82      | 3.82       | 3.82      | 3.82       |
| 30    | .010   |               | 6.62   | 5.30    | 4.42  | 4.08       | 3.98          | 3.90      | 3.90       | 3.90      | 3.90       |
| 31    | .0089  |               | 6.80   | 5.50    | 4.58  | 4.16       | 4.08          | 4.08      | 4.08       | 4.08      | 4.08       |
| 32    | .008   | 10.88         | 6.96   | 5.74    | 4.76  | 4.24       | 4.16          | 4.24      | 4.24       | 4.24      | 4.24       |
| 33    | .0071  | 11.38         | 7.30   | 5.90    | 4.92  | 4.42       | 4.32          | 4.42      | 4.42       | 4.42      | 4.42       |
| 34    | .0063  | 11.90         | 7.64   | 6.12    | 5.10  | 4.66       | 4.58          | 4.76      | 4.76       | 4.76      | 4.76       |
| 35    | .0056  | 12.74         | 8.16   | 6.42    | 5.26  | 4.92       | 5.00          | 5.26      | 5.26       | 5.26      | 5.26       |
| 36    | .005   | 13.60         | 8.66   | 6.78    | 5.52  | 5.26       | 5.44          | 5.94      | 5.94       | 5.94      | 5.94       |
| 37    | .0045  | 14.44         | 9.18   | 7.24    | 5.94  | 5.60       | 5.94          | 6.80      | 6.80       | 6.80      | 6.80       |
| 38    | .004   | 15.72         | 9.86   | 8.02    | 6.80  | 6.12       | 6.80          | 7.86      | 7.86       | 7.86      | 7.86       |
| 39    | .0035  | 17.42         | 10.88  | 9.44    | 8.50  | 7.64       | 8.50          | 9.76      | 9.76       | 9.76      | 9.76       |
| 40    | .0031  | 19.54         | 12.32  | 11.04   | 10.20 | 9.34       | 10.20         | 11.90     | 11.90      | 11.90     | 11.90      |
|       | .00275 | 21.66         | 14.02  | 12.74   | 11.90 | 11.04      | 12.24         | 12.92     | 13.60      | 14.28     | 15.88      |
|       | .0025  | 24.22         | 15.72  | 14.44   | 13.60 | 12.74      | 14.86         | 16.48     | 18.36      | 20.40     | 22.68      |
|       | .00225 | 26.76         | 17.84  | 17.02   | 16.14 | 15.30      | 19.34         | 21.50     | 23.88      | 26.52     | 29.48      |
|       | .002   | 29.74         | 20.40  | 19.88   | 19.54 | 18.70      | 24.56         | 27.28     | 30.26      | 33.66     | 37.40      |
|       | .00175 | 33.14         | 24.22  | 24.22   | 24.22 | 24.64      | 29.74         | 33.06     | 36.72      | 40.80     | 45.30      |
|       | .0015  | 36.54         | 28.04  | 28.04   | 28.04 | 33.40      | 37.14         | 41.30     | 45.90      | 51.00     | 56.68      |
|       | .00125 | 48.86         | 42.06  | 42.06   | 42.06 | 49.12      | 54.22         | 57.02     | 60.08      | 63.24     | 70.2       |
|       | .001   | 64.60         | 56.10  | 56.10   | 56.10 | 63.92      | 67.32         | 70.80     | 73.60      | 77.52     | 86.10      |

# TOPHET D<sup>®</sup>

Tophet D is an alloy of 35% nickel and  $18\frac{1}{2}\%$  chromium. It is chiefly used for electric furnace heating element applications. It is not as resistant to chemical media as Tophet C although it is entirely rust proof at room temperature.

For electric furnace heating element applications in general, Tophet A is the standard for the industry. However, on some applications where the element is heated to the critical temperature of  $1750^{\circ}$ F in some protective atmospheres, Tophet A is subject to an inter-granular type of corrosion called "green rot".  $Tophet\ D$  is immune to this type of corrosion, so if a furnace is to be operated with a protective atmosphere all the time and if the atmosphere is known to be harmful to Tophet A, then  $Tophet\ D$  is offered as an alternative material. Both Tophet A and  $Tophet\ D$  pick up carbon from certain furnace atmospheres, but  $Tophet\ D$  does so to a greater degree; hence, elements made from it will eventually become brittle when cold.



# TOPHET D°

#### COLD ROLLED FURNACE STRIP

Resistivity: 471 Ohms Per Sq. Mil Ft. at 68°F. Weight Per Cu. Inch: 0.2872 lbs. Specific Gravity 7.95

#### Factors for Determining Resistance at Various Temperatures

| Temperature °C | 20    | 100   | 200   | 300   | 400   | 500   | 600   |       | 800   | 900   |       | 1100  |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temperature °F | 68    | 212   | 392   |       |       |       |       |       |       |       |       |       |
| Factor         | 1.000 | 1.028 | 1.065 | 1.100 | 1.125 | 1.155 | 1.178 | 1.196 | 1.212 | 1.228 | 1.244 | 1.260 |

|           |        | OHMS PER FOOT |        |        |         |         |         |        |        |         |                       |  |  |
|-----------|--------|---------------|--------|--------|---------|---------|---------|--------|--------|---------|-----------------------|--|--|
| Thickness |        |               |        | W      | idth in | INCHE   | S       |        |        |         | List Price<br>Per Lb. |  |  |
| Inches    | 1/2    | 5/8           | 3/4    | 7∕8    | 1       | 11/8    | 11/4    | 11/2   | 1¾     | 2       | All Widths            |  |  |
| .130      | .00724 | .00580        | .00483 | .00414 | .00362  | .00322  | .00290  | .00242 | .00207 | .001812 | \$2.24                |  |  |
| .125      | .00754 | .00603        | .00502 | .00431 | . 00377 | .00335  | .00303  | .00251 | .00215 | .001883 | 2.24                  |  |  |
| .120      | .00785 | .00628        | .00523 | .00449 | . 00393 | .00349  | .00314  | .00262 | .00224 | .001962 | 2.24                  |  |  |
| .115      | .00819 | .00655        | .00546 | .00468 | .00410  | .00364  | .00328  | .00273 | .00234 | .00205  | 2.24                  |  |  |
| .110      | .00856 | .00685        | .00571 | .00490 | .00428  | .00380  | .00343  | .00286 | .00245 | .00214  | 2.24                  |  |  |
| .105      | .00897 | .00718        | .00598 | .00513 | .00448  | .00398  | .00359  | .00299 | .00258 | .00224  | 2.24                  |  |  |
| .100      | .00942 | .00754        | .00628 | .00538 | .00471  | .00418  | .00376  | .00314 | .00269 | .00235  | 2.24                  |  |  |
| .095      | .00992 | .00794        | .00661 | .00567 | .00496  | .00440  | .00397  | .00331 | .00283 | .00248  | 2.24                  |  |  |
| .090      | .01407 | .00838        | .00698 | .00598 | .00524  | .00465  | .00419  | .00349 | .00299 | .00262  | 2.24                  |  |  |
| .085      | .01108 | .00887        | .00739 | .00634 | .00554  | .00492  | .00443  | .00370 | .00317 | .00277  | 2.24                  |  |  |
| .080      | .01178 | .00942        | .00785 | .00674 | .00589  | .00523  | .00471  | .00393 | .00337 | .00294  | 2.24                  |  |  |
| .075      | .01256 | .01005        | .00837 | .00718 | .00628  | .00558  | .00502  | .00419 | .00359 | .00314  | 2.24                  |  |  |
| .0725     | .01299 | .01040        | .00866 | .00743 | .00650  | . 00577 | .00520  | .00433 | .00371 | .00325  | 2.24                  |  |  |
| .070      | .01345 | .01077        | .00897 | .00770 | .00673  | .00598  | .00538  | .00448 | .00385 | .00336  | 2.24                  |  |  |
| .0675     | .01395 | .01117        | .00930 | .00798 | .00698  | .00620  | .00558  | .00465 | .00399 | .00349  | 2.24                  |  |  |
| .065      | .01449 | .01160        | .00966 | .00828 | .00725  | . 00644 | .00580  | .00483 | .00414 | .00362  | 2.24                  |  |  |
| .0625     | .01508 | .01206        | .01005 | .00862 | .00754  | .00669  | .00603  | .00502 | .00431 | .00377  | 2.34                  |  |  |
| .060      | .01570 | .01256        | .01047 | .00897 | .00785  | .00697  | .00628  | .00524 | .00449 | .00393  | 2.34                  |  |  |
| .055      | .01712 | .01370        | .01142 | .00979 | .00856  | .00761  | . 00685 | .00571 | .00490 | .00428  | 2.34                  |  |  |
| .050      | .01883 | .01508        | .01256 | .01078 | .00942  | .00836  |         | .00628 | .00538 | .00471  | 2.34                  |  |  |
| .045      | .0209  | .01675        | .01395 | .01197 | .01047  | .00930  |         | .00698 | .00598 | .00523  | 2.34                  |  |  |
| .040      | .0236  | .01885        | .01570 | .01346 | .01178  | .01046  | .00942  | .00785 | .00673 | .00589  | 2.34                  |  |  |
| .035      | .0269  | .0215         | .01794 | .01539 |         | .01195  | .01078  | .00898 | .00769 | .00673  | 2.34                  |  |  |
| .030      | .0314  | .0251         | .0209  | .01795 | .01570  | .01384  | .01257  | .01047 | .00897 | .00785  | 2.52                  |  |  |
| .025      | .0377  | .0302         | .0251  | .0215  | .01884  | .01673  | .01507  | .01256 | .01078 | .00942  | 2.60                  |  |  |
| .020      | .0471  | .0377         | .0314  | .0269  | .0236   | .0209   | .01885  | .01570 | .01345 | .01178  | 2.70                  |  |  |

# TOPHET D®

#### POUNDS PER FOOT

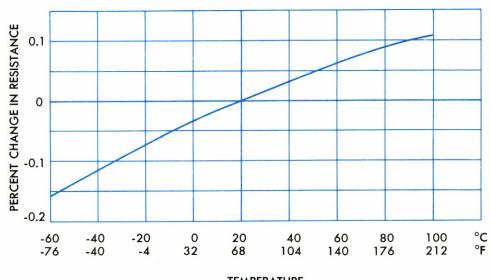
| Thickness | WIDTH IN INCHES |        |        |        |        |        |        |        |        |        |  |  |  |
|-----------|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| Inches    | 1/2             | 5/8    | 3/4    | 7∕8    | 1      | 11/8   | 11/4   | 11/2   | 1¾     | 2      |  |  |  |
| .130      | .2240           | . 2800 | .3360  | .3920  | . 4480 | .5040  | .5600  | . 6720 | .7840  | .8960  |  |  |  |
| .125      | .2154           | .2692  | .3231  | .3769  | . 4308 | . 4846 | .5384  | . 6461 | .7538  | .8615  |  |  |  |
| .120      | .2068           | .2585  | .3101  | .3618  | . 4135 | . 4652 | . 5169 | . 6203 | .7237  | .8270  |  |  |  |
| .115      | .1981           | .2477  | . 2972 | . 3462 | . 3963 | . 4458 | . 4954 | . 5944 | . 6935 | .7926  |  |  |  |
| .110      | .1895           | . 2369 | . 2843 | .3317  | .3791  | . 4264 | . 4738 | .5686  | . 6634 | .7581  |  |  |  |
| .105      | .1809           | . 2261 | .2714  | .3166  | .3618  | . 4071 | . 4523 | .5427  | .6332  | .7237  |  |  |  |
| .100      | .1723           | .2154  | . 2585 | .3015  | .3446  | .3877  | . 4308 | . 5169 | . 6031 | . 6892 |  |  |  |
| .095      | .1637           | . 2046 | . 2455 | .2864  | .3274  | .3683  | . 4092 | . 4911 | .5729  | .6547  |  |  |  |
| .090      | . 1551          | .1938  | . 2326 | .2714  | .3101  | .3489  | .3877  | . 4652 | .5427  | . 6203 |  |  |  |
| .085      | .1465           | .1831  | . 2197 | . 2563 | . 2929 | .3295  | .3661  | . 4394 | .5126  | . 5858 |  |  |  |
| .080      | .1378           | .1723  | .2068  | .2412  | .2757  | .3101  | .3446  | . 4135 | .4824  | .5514  |  |  |  |
| .075      | . 1292          | .1615  | . 1938 | . 2261 | . 2585 | . 2908 | .3231  | .3877  | . 4523 | .5169  |  |  |  |
| .0725     | .1249           | .1561  | . 1874 | .2186  | . 2498 | .2811  | .3123  | .3748  | . 4372 | . 4997 |  |  |  |
| .070      | .1206           | .1508  | . 1809 | .2111  | . 2412 | .2714  | .3015  | .3618  | . 4221 | . 4824 |  |  |  |
| .0675     | .1163           | .1454  | .1745  | . 2035 | . 2326 | .2617  | .2908  | .3489  | . 4071 | . 4652 |  |  |  |
| .065      | .1120           | .1400  | .1680  | . 1960 | . 2240 | .2520  | .2800  | .3360  | .3920  | . 4480 |  |  |  |
| .0625     | . 1077          | .1346  | . 1615 | .1885  | .2154  | .2423  | .2692  | .3231  | .3769  | . 4308 |  |  |  |
| .060      | .1034           | .1292  | . 1551 | . 1809 | . 2068 | .2326  | . 2585 | .3101  | .3618  | . 4135 |  |  |  |
| .055      | .0948           | .1185  | .1421  | .1658  | .1895  | .2132  | . 2369 | . 2843 | .3317  | .3791  |  |  |  |
| .050      | .0862           | .1077  | .1292  | .1508  | .1723  | .1938  | .2154  | .2585  | .3015  | .3446  |  |  |  |
| .045      | .0775           | .0969  | .1163  | . 1357 | .1551  | .1745  | .1938  | .2325  | .2714  | .3101  |  |  |  |
| .040      | .0689           | .0862  | .1034  | .1206  | .1378  | . 1551 | .1723  | .2063  | . 2412 | . 2757 |  |  |  |
| .035      | .0603           | .0754  | .0905  | . 1055 | .1206  | .1357  | .1508  | .1809  | .2111  | .2412  |  |  |  |
| .030      | .0517           | .0646  | .0775  | .0905  | . 1034 | .1163  | . 1292 | . 1551 | .1809  | .2068  |  |  |  |
| .025      | .0431           | .0538  | .0646  | .0754  | .0862  | .0969  | . 1077 | .1292  | .1508  | .1723  |  |  |  |
| .020      | .0345           | .0431  | .0517  | .0603  | .0689  | .0775  | .0862  | . 1034 | .1206  | .1378  |  |  |  |

# TOPHET D®

Surface Area in Square Inches Per Lineal Foot

| Thickness<br>Inches | WIDTH IN INCHES |       |       |       |       |       |       |       |       |       |  |  |  |
|---------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|                     | 1/2             | 5/8   | 3/4   | 7∕8   | 1     | 11/8  | 11/4  | 11/2  | 1¾    | 2     |  |  |  |
| .130                | 15.12           | 18.12 | 21.12 | 24.12 | 27.12 | 30.12 | 33.12 | 39.12 | 45.12 | 51.12 |  |  |  |
| .125                | 15.00           | 18.00 | 21.00 | 24.00 | 27.00 | 30.00 | 33.00 | 39.00 | 45.00 | 51.00 |  |  |  |
| .120                | 14.88           | 17.88 | 20.88 | 23.88 | 26.88 | 29.88 | 32.88 | 38.88 | 44.88 | 44.88 |  |  |  |
| .115                | 14.76           | 17.76 | 20.76 | 23.76 | 26.76 | 29.76 | 32.76 | 38.76 | 44.76 | 50.76 |  |  |  |
| .110                | 14.64           | 17.64 | 20.64 | 23.64 | 26.64 | 29.64 | 32.64 | 38.64 | 44.64 | 50.64 |  |  |  |
| .105                | 14.52           | 17.52 | 20.52 | 23.52 | 26.52 | 29.52 | 32.52 | 38.52 | 44 52 | 50.52 |  |  |  |
| .100                | 14.40           | 17.40 | 20.40 | 23.40 | 26.40 | 29.40 | 32.40 | 38.40 | 44.40 | 50.40 |  |  |  |
| .095                | 14.28           | 17.28 | 20.28 | 23.28 | 26.28 | 29.28 | 32.28 | 38.28 | 44.28 | 50.28 |  |  |  |
| .090                | 14.16           | 17.16 | 20.16 | 23.16 | 26.16 | 29.16 | 32.16 | 38.16 | 44.16 | 50.16 |  |  |  |
| .085                | 14.04           | 17.04 | 20.04 | 23.04 | 26.04 | 29.04 | 32.04 | 38.04 | 44.04 | 50.04 |  |  |  |
| .080                | 13.92           | 16.92 | 19.92 | 22.92 | 25.92 | 28.92 | 31.92 | 37.92 | 43 92 | 49.92 |  |  |  |
| .075                | 13.80           | 16.80 | 19.80 | 22.80 | 25.80 | 28.80 | 31.80 | 37.80 | 43.80 | 49.80 |  |  |  |
| .0725               | 13.74           | 16.74 | 19.74 | 22.74 | 25.74 | 28.74 | 31.74 | 37.74 | 43.74 | 49.74 |  |  |  |
| .070                | 13.68           | 16.68 | 19.68 | 22.68 | 25.68 | 28.68 | 31.68 | 37.68 | 43.68 | 49.68 |  |  |  |
| .0675               | 13.62           | 16.62 | 19.62 | 22.62 | 25.62 | 28.62 | 31.62 | 37.62 | 43.62 | 49.62 |  |  |  |
| .065                | 13.56           | 16.56 | 19.56 | 22.56 | 25.56 | 28.56 | 31.56 | 37.56 | 43.56 | 49.56 |  |  |  |
| .0625               | 13.50           | 16.50 | 19.50 | 22.50 | 25.50 | 28.50 | 31.50 | 37.50 | 43.50 | 49.50 |  |  |  |
| .060                | 13.44           | 16.44 | 19.44 | 22.44 | 25.44 | 28.44 | 31.44 | 37.44 | 43.44 | 49.44 |  |  |  |
| .055                | 13.32           | 16.32 | 19.32 | 22.32 | 25.32 | 28.32 | 31.32 | 37.32 | 43.32 | 49.32 |  |  |  |
| .050                | 13.20           | 16.20 | 19.20 | 22.20 | 25.20 | 28.20 | 31.20 | 37.20 | 43.20 | 49.20 |  |  |  |
| .045                | 13.08           | 16.08 | 19.08 | 22.08 | 25.08 | 28.08 | 31.08 | 37.08 | 43.08 | 49.08 |  |  |  |
| .040                | 12.96           | 15.96 | 18.96 | 21.96 | 24.96 | 27.96 | 30.96 | 36.96 | 42.96 | 48.96 |  |  |  |
| .035                | 12.84           | 15.84 | 18.84 | 21.84 | 24.84 | 27.84 | 30.84 | 36.84 | 42.84 | 48.84 |  |  |  |
| .030                | 12.72           | 15.72 | 18.72 | 21.72 | 24.72 | 27.72 | 30.72 | 36.72 | 42.72 | 48.72 |  |  |  |
| .025                | 12.60           | 15.60 | 18.60 | 21.60 | 24.60 | 27.60 | 30.60 | 36.60 | 42.60 | 48.60 |  |  |  |
| .020                | 12.48           | 15.48 | 18.48 | 21.48 | 24.48 | 27.48 | 30.48 | 36.48 | 42.48 | 48.48 |  |  |  |

# **EVANOHM®**


Evanohm is an alloy with a nominal composition of 74.50% Nickel, 20% Chromium, 2.75% Aluminum and 2.75% Copper.

Evanohm has a resistivity of 800 ohms per circular mil foot and a temperature coefficient of plus or minus .00002 per degree C, and a very low thermal emf vs copper. Evanohm possesses a high tensile strength in fine sizes, a high resistance to corrosion and is non-magnetic. Its principal application is in fine sizes for precision wound resistors.

It is supplied in wire form and insulated with enamel, silk, nylon, cotton and glass.

The chart below shows the resistance change with temperature from minus  $60^{\circ}$ C. to plus  $100^{\circ}$ C.

#### RESISTANCE CHANGE VERSUS TEMPERATURE OF EVANOHM.

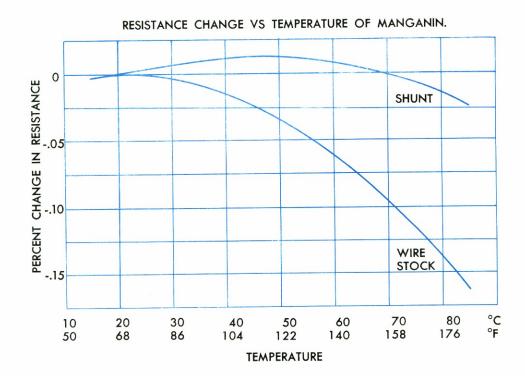


# **EVANOHM®**

#### Resistance weight and price of wire

Resistivity 800 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .293 lbs. Specific Gravity 8.10

| B & S    | Dia. in<br>Inches | Ohms Per Ft.<br>at 20°C. (68°F.) | Ohms Per Pound<br>Bare Wire | Feet Per Pound<br>Bare Wire | Pounds Per<br>M Feet | List Price<br>Per Pound<br>Bare Wire |
|----------|-------------------|----------------------------------|-----------------------------|-----------------------------|----------------------|--------------------------------------|
|          |                   |                                  |                             |                             |                      |                                      |
| 15       | .057              | . 2462                           | 27.48                       | 111.6                       | 8.961                | \$ 5.18                              |
| 16       | .051              | .3076                            | 42.85                       | 139.3                       | 7.179                | 5.28                                 |
| 17       | .045              | . 3951                           | 70.56                       | 178.6                       | 5.599                | 5.40                                 |
| 18       | .040              | . 5000                           | 113.0                       | 226.0                       | 4.425                | 5.56                                 |
| 19       | .036              | . 6173                           | 172.7                       | 279.8                       | 3.574                | 5.76                                 |
| 20       | .032              | .7813                            | 276.7                       | 354.1                       | 2.824                | 6.00                                 |
| 21       | .0285             | .9849                            | 439.7                       | 446.4                       | 2.240                | 6.34                                 |
| 22       | .0253             | 1.250                            | 707.9                       | 566.3                       | 1.766                | 6.80                                 |
| 23       | .0226             | 1.566                            | 1,112.0                     | 709.8                       | 1.409                | 7.26                                 |
| 24       | .0201             | 1.980                            | 1,777.0                     | 897.4                       | 1.114                | 7.84                                 |
| 25       | .0179             | 2.497                            | 2,827.0                     | 1,132.0                     | .8834                | 8.42                                 |
|          |                   |                                  | 4,537.0                     | 1,434.0                     | .6974                | 9.00                                 |
| 26       | .0159             | 3.164                            | /                           |                             |                      | 9.56                                 |
| 27       | .0142             | 3.967                            | 7,133.0                     | 1,798.0                     | . 5562               |                                      |
| 28       | .0126             | 5.039                            | 11,509.0                    | 2,284.0                     | . 4378               | 10.16                                |
| 29       | .0113             | 6.265                            | 17,786.0                    | 2,839.0                     | .3522                | 10.72                                |
| 30       | .010              | 8.000                            | 29,008.0                    | 3,626.0                     | .2758                | 11.30                                |
| 31       | .0089             | 10.10                            | 46,228.0                    | 4,577.0                     | . 2185               | 11.88                                |
| 32       | .008              | 12.50                            | 70,813.0                    | 5,665.0                     | .1765                | 12.46                                |
| 33       | .0071             | 15.87                            | 114,137.0                   | 7,192.0                     | . 1390               | 13.38                                |
| 34       | .0063             | 20.16                            | 184,162.0                   | 9,135.0                     | .1095                | 14.54                                |
| 35       | .0056             | 25.51                            | 294,921.0                   | 11,561.0                    | .08650               | 16.16                                |
| 36       | .005              | 32.00                            | 464,064.0                   | 14,502.0                    | .06896               | 18.24                                |
| 37       | .0045             | 39.51                            | 707,387.0                   | 17,904.0                    | .05585               | 20.78                                |
|          |                   |                                  | 1,133,000.0                 | 22,660.0                    | .04413               | 23.78                                |
| 38<br>39 | .004<br>.0035     | 50.00<br>65.31                   | 1,932,980.0                 | 29,597.0                    | .03379               | 27.72                                |
|          | 0004              | 00.05                            | 2.110.000.0                 | 07 707 0                    | 00051                | 20.24                                |
| 40       | .0031             | 83.25                            | 3,140,778.0                 | 37,727.0                    | .02651               | 32.34                                |
|          | .00275            | 105.8                            | 5,072,264.0                 | 47,942.0                    | .02086               | 36.96                                |
|          | .0025             | 128.0                            | 7,425,280.0                 | 58,010.0                    | .01724               | 43.88                                |
|          | .00225            | 158.0                            | 11,315,486.0                | 71,617.0                    | .01376               | 55.44                                |
|          | .002              | 200.0                            | 18,128,000.0                | 90,640.0                    | .01103               | 69.30                                |
|          | .00175            | 261.3                            | 30,934,523.0                | 118,387.0                   | .008466              | 87.78                                |
|          | .0015             | 355.6                            | 57,300,673.0                | 161,138.0                   | .006206              | 110.88                               |
|          | .0014             | 408.2                            | 75,508,836.0                | 184,980.0                   | .005406              | 138.60                               |
|          | .0013             | 473.4                            | 101,559,922.0               | 214,533.0                   | .004661              | 180.18                               |
|          | .0012             | 555.0                            | 139,736,790.0               | 251,778.0                   | .003972              | 221.76                               |
|          | .0011             | 661.2                            | 198,119,984.0               | 299,637.0                   | .003337              | 277.20                               |
|          | .001              | 800.0                            | 290,048,800.0               | 362,561.0                   | .002758              | 346.50                               |
|          | .0009             | 987.7                            | 442,100,446.0               | 447,606.0                   | .002234              | 490.42                               |
|          | .0008             | 1250.0                           | 708,127,500.0               | 566,502.0                   | .001765              | 250.42                               |
|          | .0008             | 1633.0                           | 1,208,289,360.0             | 739,920.0                   | .001765              |                                      |
|          | .0007             | 1000.0                           | 1,400,409,300.0             | 100,020.0                   | 1001001              |                                      |


# MANGANIN

Manganin is an alloy of copper, manganese and nickel. It is used for resistors in precision built electrical apparatus such as Wheatstone bridges, decade boxes and potentiometers.

Manganin has a resistivity of 290 ohms per circular mil foot and a low thermal emf vs copper (not exceeding .0025 mv per degree between 0 and 100°C) and a nominal temperature coefficient of resistance of .000015 per degree C between 15 and 35°C. The peak in the resistance temperature coefficient curve is approximately 25°C.

When winding *Manganin* resistors, strains are set up in the wire which must be relieved to obtain stability. It has been found necessary to artificially age resistors by baking at temperatures of from 250°F to 280°F from 24 to 48 hours.

Manganin is available in all sizes of wire and ribbon, and in wire form can be insulated with enamel, silk, nylon, cotton or glass.



# **MANGANIN**

### Resistance, Weight and Price of Wire

Resistivity 290 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch .296 Lbs. Specific Gravity 8.193

| B & S                      | Dia. in<br>Inches                         | Ohms Per Ft.<br>at 68°F. (20°C.)                    | Ohms Per Pound<br>Bare Wire                                                | Feet Per Pound<br>Bare Wire                                 | Pounds Per<br>M Feet                              | List Price<br>Per Pound<br>Bare Wire      |
|----------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| 000<br>00<br>0<br>1<br>2   | .410<br>.365<br>.325<br>.289<br>.258      | .001725<br>.002177<br>.002746<br>.003472<br>.004357 | .003678<br>.005856<br>.009317<br>.01490<br>.02346                          | 2.132<br>2.690<br>3.393<br>4.292<br>5.385                   | 469.0<br>371.7<br>294.7<br>233.0<br>185.7         | \$ 1.73<br>1.73                           |
| 3<br>4<br>5<br>6<br>7      | .229<br>.204<br>.182<br>.162<br>.144      | .005530<br>.006968<br>.008755<br>.01105<br>.01399   | .03780<br>.05002<br>.09473<br>.1509<br>.2419                               | 6.835<br>8.613<br>10.82<br>13.66<br>17.29                   | 146.3<br>116.1<br>92.42<br>73.22<br>57.85         | 1.73<br>1.73<br>1.73<br>1.73<br>1.73      |
| 8<br>9<br>10<br>11<br>12   | .128<br>.114<br>.102<br>.091<br>.081      | .01770<br>.02231<br>.02787<br>.03502<br>.04420      | .3873<br>.6153<br>.9601<br>1.516<br>2.414                                  | 21.88<br>27.58<br>34.45<br>43.29<br>54.61                   | 45.71<br>36.26<br>29.03<br>23.10<br>18.31         | 1.73<br>1.76<br>1.79<br>1.81<br>1.85      |
| 13<br>14<br>15<br>16<br>17 | .072<br>.064<br>.057<br>.051              | .05594<br>.07080<br>.08926<br>.1115<br>.1432        | 3.869<br>6.194<br>9.845<br>15.36<br>25.35                                  | 69.16<br>87.49<br>110.3<br>137.8<br>177.0                   | 14.46<br>11.43<br>9.065<br>7.257<br>5.650         | 1.91<br>1.93<br>1.97<br>2.01<br>2.07      |
| 18<br>19<br>20<br>21<br>22 | .040<br>.036<br>.032<br>.0285<br>.0253    | .1813<br>.2238<br>.2832<br>.3570<br>.4531           | 40.61<br>61.88<br>99.12<br>157.5<br>253.7                                  | 224.0<br>276.5<br>350.0<br>441.3<br>559.9                   | 4.464<br>3.616<br>2.857<br>2.266<br>1.786         | 2.13<br>2.20<br>2.27<br>2.33<br>2.40      |
| 23<br>24<br>25<br>26<br>27 | .0226<br>.0201<br>.0179<br>.0159<br>.0142 | .5678<br>.7178<br>.9051<br>1.147<br>1.438           | 398.5<br>636.9<br>1,013.0<br>1,626.0<br>2,555.0                            | 701.8<br>887.3<br>1,119.0<br>1,418.0<br>1,777.0             | 1.425<br>1.127<br>.8939<br>.7053<br>.5626         | 2.47<br>2.53<br>2.67<br>2.80<br>3.00      |
| 28<br>29<br>30<br>31<br>32 | .0126<br>.0113<br>010<br>.0089            | 1.826<br>2.271<br>2.900<br>3.662<br>4.531           | 4,123.0<br>6,375.0<br>10,390.0<br>16,570.0<br>25,370.0                     | 2,258.0<br>2,807.0<br>3,584.0<br>4,525.0<br>5,599.0         | .4429<br>.3563<br>.2790<br>.2210<br>.1786         | 3.20<br>3.40<br>3.60<br>3.87<br>4.13      |
| 33<br>34<br>35<br>36<br>37 | .0071<br>.0063<br>.0056<br>.005           | 5.754<br>7.305<br>9.247<br>11.60<br>14.32           | 40,920.0<br>65,990.0<br>105,700.0<br>166,300.0<br>253,500.0                | 7,112.0<br>9,033.0<br>11,430.0<br>14,340.0<br>17,700.0      | .1406<br>.1107<br>.08749<br>.06975<br>.05650      | 4.40<br>4.93<br>6.00<br>7.33<br>9.33      |
| 38<br>39<br>40             | .004<br>.0035<br>.0031<br>.00275<br>.0025 | 18.13<br>23.67<br>30.18<br>38.36<br>46.40           | 406,100.0<br>692,600.0<br>1,126,000.0<br>1,818,000.0<br>2,661,000.0        | 22,400.0<br>29,260.0<br>37,300.0<br>47,390.0<br>57,340.0    | .04464<br>.03418<br>.02681<br>.02110<br>.01744    | 12.00<br>16.00<br>21.33<br>28.00<br>36.00 |
|                            | .00225<br>.002<br>.00175<br>.0015         | 57.31<br>72.50<br>94.69<br>128.9<br>148.0           | 4,059,000.0<br>6,497,000.0<br>11,078,730.0<br>20,560,000.0<br>27,070,000.0 | 70,820.0<br>89,610.0<br>117,000.0<br>159,500.0<br>182,900.0 | .01412<br>.01116<br>.008544<br>.006278<br>.005468 | 46.66<br>60.00<br>74.00<br>92.63          |
|                            | .0013<br>.0012<br>.0011<br>.001           | 171.6<br>201.4<br>239.7<br>290.0                    | 36,400,000 · 0<br>50,130,000 · 0<br>71,000,000 · 0<br>103,900,000 · 0      | 212,100.0<br>248,900.0<br>296,200.0<br>358,400.0            | .004715<br>.004018<br>.003376<br>.002790          |                                           |

## MANGANIN SHUNT STRIP

The composition of Manganin shunt strip is essentially the same as that of wire with slight modifications. Its principal use is for shunts in DC ammeters.

Specific Resistance  $\begin{cases} 180 \text{ ohms per sq. mil ft.} @ 20^{\circ} \text{ C.} \\ 230 \text{ ohms per cir. mil ft.} @ 20^{\circ} \text{ C.} \end{cases}$ 

Specific Gravity, 8.192.

Lbs. per cubic inch, .2960

Thermal E. M. F. against copper not over .003 millivolts per degree C. between  $0^{\circ}$ — $100^{\circ}$  C.

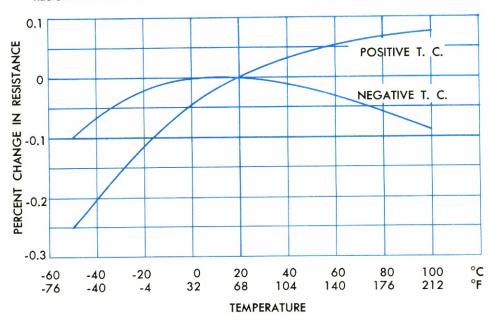
Temperature coefficient of resistance,  $\pm .000015$  between  $40-60^{\circ}$  C.

#### RESISTANCE OF SHUNT MANGANIN

| No. B. & S. | Thickness in Inches | Ohms per Ft.<br>1 Inch Width | Lbs. per 1000 Ft.<br>1 Inch Width |
|-------------|---------------------|------------------------------|-----------------------------------|
| 10          | .102                | .001765                      | 362.3                             |
| 11          | .091                | .001978                      | 323.3                             |
| 12          | .081                | . 002221                     | 287.7                             |
| 13          | .072                | .002498                      | 255.8                             |
| 14          | .064                | .002812                      | 227.3                             |
| 15          | .057                | .003158                      | 202.5                             |
| 16          | .051                | . 003529                     | 181.2                             |
| 17          | .045                | . 003999                     | 159.8                             |
| 18          | .040                | .004500                      | 142.1                             |
| 19          | .036                | . 004998                     | 127.9                             |
| 20          | .032                | . 005625                     | 113.7                             |
| 21          | .0285               | .006316                      | 101.2                             |
| 22          | . 0253              | .007115                      | 89.9                              |
| 23          | . 0226              | .007965                      | 80.3                              |
| 24          | .0201               | . 008937                     | 71.4                              |

## CUPRON®

Cupron is an alloy of 55% Copper and 45% Nickel. It is widely known as Constantan because of its practically unvarying resistance over a wide temperature range.


Cupron is used in rheostats and controls where maximum operating temperature does not exceed 1000°F. Because of its low coefficient of electrical resistance and stability, Cupron is used in fine sizes in resistors for electrical instruments.

Care must be exercised when *Cupron* is joined to copper because of the high thermal emf generated between these metals. Both terminals must be at the same temperature.

The range of temperature coefficient of resistance of Cupron is plus or minus .00004 per degree C between 0 and 100°C. Lower values can be supplied when specified.

Cupron is available in all sizes of wire, ribbon and strip. It is also available in wire form, insulated with enamel, silk, nylon, cotton and glass.

### RESISTANCE CHANGE VS TEMPERATURE OF CUPRON (LOW TEMPERATURE RANGE)



# $CUPRON^{*}$

Resistance, Weight and Price of Wire

Resistivity 294 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .321 lbs. Specific Gravity 8.9

Temperature coefficient practically nil

| B & S                                        | Dia. in<br>Inches | Ohms Per Ft.<br>@ 20°C. (68°F.) | Ohms Per Pound<br>Bare Wire | Feet Per Pound<br>Bare Wire | Pounds Per<br>M Feet | List Price<br>Per Pound<br>Bare Wire |
|----------------------------------------------|-------------------|---------------------------------|-----------------------------|-----------------------------|----------------------|--------------------------------------|
| 000                                          | .410              | .0017                           | .003                        | 1.96                        | 509.0                | \$1.30                               |
| 00                                           | .365              | .0022                           | .006                        | 2.48                        | 404.0                | 1.30                                 |
| 0                                            | .325              | 0028                            | . 009                       | 3.13                        | 320.0                | 1.30                                 |
| 1                                            | .289              | .0035                           | . 013                       | 3.95                        | 253.0                | 1.30                                 |
| 2                                            | .258              | .0044                           | . 021                       | 4.95                        | 202.0                | 1.30                                 |
| 3                                            | .229              | . 0056                          | . 034                       | 6.29                        | 158.0                | 1.30                                 |
| 4                                            | .204              | .0070                           | . 055                       | 7.92                        | 126.0                | 1.30                                 |
| 5                                            | .182<br>.162      | .0088                           | .087                        | 9.96<br>12.50               | 104.0<br>80.0        | 1.30<br>1.30                         |
| 7                                            | .144              | 0142                            | . 222                       | 15.90                       | 62.8                 | 1.30                                 |
| _                                            | .128              |                                 |                             |                             |                      |                                      |
| 8                                            | .128              | .0180                           | . 359<br>. 556              | 20.10<br>25.30              | 49.7<br>39.5         | 1.30<br>1.32                         |
| 10                                           | .102              | 0283                            | .887                        | 31.70                       | 31.5                 | 1.34                                 |
| 11                                           | .091              | 0355                            | 1.39                        | 39.80                       | 25.1                 | 1.36                                 |
| 12                                           | .081              | .0448                           | 2.20                        | 50.20                       | 19.9                 | 1.39                                 |
| 13                                           | .072              | .0567                           | 3.56                        | 63.60                       | 15.7                 | 1.42                                 |
| 14                                           | .064              | .0717                           | 5.71                        | 80.50                       | 12.4                 | 1.42                                 |
| 15                                           | .057              | 0905                            | 8.98                        | 101.00                      | 9.90                 | 1.48                                 |
| 16                                           | .051              | .1130                           | 14.2                        | 126.00                      | 7.93                 | 1.51                                 |
| 17                                           | .045              | 1452                            | 23.4                        | 162.00                      | 6.17                 | 1.55                                 |
| 18                                           | .040              | .1837                           | 37.6                        | 206.00                      | 4.85                 | 1.60                                 |
| 19                                           | .036              | 2268                            | 57.4                        | 254.00                      | 3.93                 | 1.65                                 |
| 20                                           | .032              | . 2871                          | 92.4                        | 322.00                      | 3.10                 | 1.70                                 |
| 21                                           | .0285             | 3619                            | 146.0                       | 406.00                      | 2.46                 | 1.75                                 |
| 22                                           | .0253             | . 4590                          | 234.0                       | 515.00                      | 1.94                 | 1.80                                 |
| 23                                           | .0226             | 5756                            | 371.0                       | 646.00                      | 1.54                 | 1.85                                 |
| 24                                           | .0201             | .7280                           | 599.0                       | 820.00                      | 1.22                 | 1.90                                 |
| 25                                           | .0179             | 9176                            | 943.0                       | 1,029.00                    | .971                 | 2.00                                 |
| 26                                           | .0159             | 1.163                           | 1,513.0                     | 1,305.00                    | . 766                | 2.10                                 |
| 27                                           | .0142             | 1.458                           | 2,372.0                     | 1,636.00                    | . 611                | 2.25                                 |
| 28                                           | .0126             | 1.852                           | 3,844.0                     | 2,078.00                    | . 481                | 2.40                                 |
| 29                                           | .0113             | 2.302                           | 5,943.0                     | 2,584.00                    | . 386                | 2.55                                 |
| 30                                           | .010              | 2.940                           | 9,702.0                     | 3,300.00                    | . 303                | 2.70                                 |
| 31<br>32                                     | .0089<br>.008     | 3.710<br>4.594                  | 15,455.0<br>23,666.0        | 4,166.00<br>5,156.00        | . 240                | 2.90                                 |
| Colonia Anna Anna Anna Anna Anna Anna Anna A | -                 |                                 |                             |                             |                      | 3.10                                 |
| 33<br>34                                     | .0071<br>.0063    | 5.833<br>7.408                  | 38,163.0                    | 6,546.00                    | .152                 | 3.30                                 |
| 35                                           | .0056             | 9.375                           | 61,523.0<br>98,591.0        | 8,314.00<br>10,522.00       | .120                 | 3.70<br>4.50                         |
| 36                                           | .005              | 11.76                           | 154,440.0                   | 13,200.00                   | 075                  | 5.50                                 |
| 37                                           | .0045             | 14.52                           | 236,292.0                   | 16,296.00                   | .061                 | 7.00                                 |
| 38                                           | .004              | 18.37                           | 377,437.0                   | 20,625.00                   | .048                 | 9.00                                 |
| 39                                           | .0035             | 24.00                           | 646,512.0                   | 26,938.00                   | .037                 | 12.00                                |
| 40                                           | .0031             | 30.59                           | 1,050,533.0                 | 34,339.00                   | .029                 | 16.00                                |
|                                              | .00275            | 38.87                           | 1,696,131.0                 | 43,636.00                   | .022                 | 21.00                                |
|                                              | .0025             | 47.04                           | 2,483,712.0                 | 52,800.00                   | .019                 | 27.00                                |
|                                              | .00225            | 58.07                           | 3,785,292.0                 | 65,185.00                   | .015                 | 34.50                                |
|                                              | .002              | 73.50                           | 6,063,750.0                 | 82,500.00                   | .012                 | 43.25                                |
|                                              | .00175            | 96.00                           | 10,334,480.0                | 107,755.00                  | .0093                | 55.50                                |
|                                              | .0015             | 130.66                          | 19,163,379.0                | 147,060.00                  | .0068                | 69.50                                |
|                                              | .0014             | 150.00                          | 25,200,000.0                | 169,492.00                  | . 0059               | 87.00                                |
|                                              | .0013             | 174.00                          | 34,266,000.0                | 196,078.00                  | .0051                | 113.25                               |
|                                              | .0012             | 204.00                          | 46,400,000.0                | 227,273.00                  | .0044                | 139.50                               |
|                                              | .0011             | 243.00                          | 65,600,100.0                | 270,270.00                  | .0037                | 174.50                               |
|                                              | .001              | 294.00                          | 97,820,000.0                | 330,000.00                  | . 00303              | 218.25                               |

# $CUPRON^{\ast}$

## Current Temperature Characteristics of Straight Wire

Chart Shows Amperes Necessary to Raise to a Given Temperature, a Straight Wire in Air.

| B & S | Dia. in<br>Inches | 100°C.<br>212°F. | 200°C.<br>392°F. | 300°C.<br>572°F. | 400°C.<br>752°F. | 500°C.<br>932°F. | 600°C.<br>1112°F. |
|-------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------------|
| 1     | .289              | 59.5             | 113.0            | 173.0            | 236.0            | 297.0            | 355.0             |
| 2     | .258              | 51.0             | 96.5             | 148.0            | 200.0            | 250.0            | 300.0             |
| 3     | .229              | 43.5             | 81.5             | 124.0            | 168.0            | 210.0            | 251.0             |
| 4     | .204              | 37.2             | 69.0             | 105.0            | 141.0            | 176.0            | 210.0             |
| 5     | .182              | 31.8             | 58.8             | 89.0             | 120.0            | 148.0            | 178.0             |
| 6     | .162              | 27.3             | 50.0             | 75.0             | 100.0            | 125.0            | 149.0             |
| 7     | .144              | 23.3             | 42.2             | 63.0             | 84.5             | 104.0            | 125.0             |
| 8     | .128              | 20.0             | 36.0             | 53.0             | 70.5             | 88.0             | 105.0             |
| 9     | .114              | 17.0             | 30.5             | 44.8             | 59.5             | 73.3             | 88.0              |
| 10    | .102              | 14.5             | 25.8             | 38.0             | 50.0             | 61.5             | 74.0              |
| 11    | .091              | 12.4             | 21.9             | 32.0             | 42.0             | 51.8             | 62.0              |
| 12    | .081              | 10.6             | 18.5             | 26.8             | 35.2             | 43.2             | 52.0              |
| 13    | .072              | 9.50             | 15.7             | 22.6             | 29.5             | 36.2             | 43.0              |
| 14    | .064              | 7.70             | 13.2             | 19.0             | 24.7             | 30.3             | 36.0              |
| 15    | .057              | 6.60             | 11.2             | 16.0             | 20.8             | 25.4             | 30.2              |
| 16    | .051              | 5.65             | 9.6              | 13.7             | 17.7             | 21.6             | 25.7              |
| 17    | .045              | 4.92             | 8.25             | 11.7             | 15.2             | 18.4             | 22.0              |
| 18    | .040              | 4.32             | 7.18             | 10.2             | 13.1             | 15.9             | 18.9              |
| 19    | .036              | 3.85             | 6.32             | 8.90             | 11.5             | 13.9             | 16.4              |
| 20    | .032              | 3.38             | 5.50             | 7.70             | 9.90             | 11.9             | 14.2              |
| 21    | .0285             | 2.98             | 4.82             | 6.70             | 8.60             | 10.4             | 12.3              |
| 22    | .0253             | 2.62             | 4.18             | 5.76             | 7.40             | 8.90             | 10.5              |
| 23    | .0226             | 2.32             | 3.66             | 5.02             | 6.42             | 7.75             | 9.1               |
| 24    | .0201             | 2.03             | 3.20             | 4.36             | 5.55             | 6.70             | 7.9               |
| 25    | .0179             | 1.78             | 2.78             | 3.78             | 4.79             | 5.76             | 6.7               |
| 26    | .0159             | 1.57             | 2.42             | 3.27             | 4.12             | 4.98             | 5.8               |
| 27    | .0142             | 1.38             | 2.11             | 2.84             | 3.58             | 4.30             | 5.0               |
| 28    | .0126             | 1.21             | 1.83             | 2.44             | 3.08             | 3.69             | 4.3               |
| 29    | .0113             | 1.07             | 1.61             | 2.15             | 2.70             | 3.22             | 3.8               |
| 30    | .010              | .945             | 1.40             | 1.85             | 2.30             | 2.75             | 3.2               |
| 31    | .0089             | .825             | 1.21             | 1.58             | 1.98             | 2.37             | 2.7               |
| 32    | .008              | .732             | 1.06             | 1.39             | 1.72             | 2.06             | 2.4               |
| 33    | .0071             | .642             | .928             | 1.20             | 1.49             | 1.78             | 2.1               |
| 34    | .0063             | .552             | .808             | 1.03             | 1.28             | 1.53             | 1.7               |
| 35    | .0056             | .498             | .700             | .900             | 1.11             | 1.32             | 1.5               |
| 36    | .005              | 440              | .615             | .780             | .963             | 1.14             | 1.3               |
| 37    | .0045             | .390             | .542             | .686             | .840             | 1.00             | 1.1               |
| 38    | .0043             | .342             | .462             | .592             | .730             | .870             | 1.0               |
| 39    | .0035             | .297             | .404             | .505             | .616             | .735             |                   |
| 33    | .0000             | .260             | .350             | .434             | .530             | .630             |                   |

## CUPRON®

Resistance of Ribbon in Ohms Per Foot at 20°C. (68°F.) Resistivity = 231 Ohms Per Square Mil Foot at 20°C. (68°F.)

| Thic                       | kness                                | WIDTH IN INCHES                    |                                        |                                           |                                  |                                  |                                      |                                  |                                           |                                           |                                           |                                           |  |  |
|----------------------------|--------------------------------------|------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|
| B & S                      | Inches                               | 1/64<br>.015625                    | <sup>1</sup> / <sub>32</sub><br>.03125 | ½6<br>.0625                               | ⅓<br>.125                        | ³⁄₁6<br>.1875                    | ¼<br>.250                            | ¾<br>.375                        | ½<br>.500                                 | 5%<br>.625                                | ¾<br>.750                                 | 1″<br>1.000                               |  |  |
| 10<br>11<br>12<br>13<br>14 | .102<br>.091<br>.081<br>.072<br>.064 |                                    |                                        |                                           |                                  |                                  |                                      |                                  | .0072                                     | .0057                                     | .0048                                     | .0036                                     |  |  |
| 15<br>16<br>17<br>18<br>19 | .057<br>.051<br>.045<br>.040         |                                    |                                        |                                           |                                  |                                  |                                      |                                  | .0081<br>.0091<br>.0103<br>.0115<br>.0128 | .0064<br>.0072<br>.0082<br>.0092<br>.0102 | .0054<br>.0061<br>.0069<br>.0077<br>.0086 | .0040<br>.0045<br>.0051<br>.0058<br>.0064 |  |  |
| 20                         | .032                                 |                                    | .246                                   | .122                                      | .0614                            | .0409                            | .0307                                | .0192                            | .0144                                     | .0115                                     | .0096                                     | .0072                                     |  |  |
| 21                         | .0285                                |                                    | .276                                   | .137                                      | .0689                            | .0459                            | .0344                                | .0216                            | .0162                                     | .0129                                     | .0108                                     | .0081                                     |  |  |
| 22                         | .0253                                |                                    | .311                                   | .155                                      | .0777                            | .0518                            | .0388                                | .0243                            | .0183                                     | .0146                                     | .0122                                     | .0091                                     |  |  |
| 23                         | .0226                                |                                    | .348                                   | .173                                      | .0869                            | .0545                            | .0410                                | .0272                            | .0204                                     | .0164                                     | .0136                                     | .0102                                     |  |  |
| 24                         | .0201                                |                                    | .391                                   | .196                                      | .0982                            | .0613                            | .0450                                | .0307                            | .0230                                     | .0184                                     | .0154                                     | .0115                                     |  |  |
| 25                         | .0179                                |                                    | .440                                   | .219                                      | .1098                            | .0688                            | .0516                                | .0344                            | .0258                                     | .0206                                     | .0172                                     | .0129                                     |  |  |
| 26                         | .0159                                |                                    | .495                                   | .247                                      | .1236                            | .0775                            | .0580                                | .0387                            | .0290                                     | .0232                                     | .0194                                     | .0145                                     |  |  |
| 27                         | .0142                                |                                    | .554                                   | .276                                      | .1384                            | .0868                            | .0650                                | .0435                            | .0326                                     | .0260                                     | .0218                                     | .0163                                     |  |  |
| 28                         | .0126                                |                                    | .625                                   | .312                                      | .1560                            | .0978                            | .0735                                | .0490                            | .0366                                     | .0293                                     | .0244                                     | .0183                                     |  |  |
| 29                         | .0113                                |                                    | .697                                   | .347                                      | .1739                            | .1090                            | .0820                                | .0545                            | .0409                                     | .0327                                     | .0272                                     | .0204                                     |  |  |
| 30                         | .010                                 | 1.573                              | . 786                                  | .393                                      | .1966                            | . 1232                           | .0924                                | .0616                            | .0462                                     | .0370                                     | .0308                                     | .0231                                     |  |  |
| 31                         | .0089                                | 1.767                              | . 883                                  | .442                                      | .2209                            | . 1384                           | .1038                                | .0692                            | .0519                                     | .0415                                     | .0346                                     | .0260                                     |  |  |
| 32                         | .008                                 | 1.966                              | .983                                   | . 491                                     | .2783                            | .1540                            | .1155                                | .0770                            | .0578                                     | .0462                                     | .0385                                     | .0289                                     |  |  |
| 33                         | .0071                                | 2.215                              | 1.108                                  | . 554                                     | .3136                            | .1735                            | .1301                                | .0868                            | .0651                                     | .0521                                     | .0434                                     | .0325                                     |  |  |
| 34                         | .0063                                | 2.496                              | 1.248                                  | . 624                                     | .3534                            | .1956                            | .1467                                | .0978                            | .0733                                     | .0587                                     | .0489                                     | .0367                                     |  |  |
| 35                         | .0056                                | 2.808                              | 1.404                                  | .702                                      | .3976                            | .2200                            | .1650                                | .1100                            | .0825                                     | .0660                                     | .0550                                     | .0413                                     |  |  |
| 36                         | .005                                 | 3.146                              | 1.573                                  | .786                                      | .4453                            | .2644                            | .1848                                | .1232                            | .0924                                     | .0739                                     | .0616                                     | .0462                                     |  |  |
| 37                         | .0045                                | 3.495                              | 1.748                                  | .874                                      | .4949                            | .2738                            | .2053                                | .1369                            | .1027                                     | .0821                                     | .0684                                     | .0513                                     |  |  |
| 38                         | .004                                 | 3.932                              | 1.966                                  | 1.113                                     | .5566                            | 3080                             | .2310                                | .1540                            | .1155                                     | .0924                                     | .0770                                     | .0578                                     |  |  |
| 39                         | .0035                                | 4.494                              | 2.247                                  | 1.272                                     | .6362                            | 3520                             | .2640                                | .1760                            | .1320                                     | .1056                                     | .0880                                     | .0660                                     |  |  |
| 40                         | .0031<br>.00275<br>.0025<br>.00225   | 5.073<br>5.719<br>6.291<br>6.990   | 2.537<br>2.860<br>3.146<br>3.495       | 1.436<br>1.619<br>1.781<br>1.979<br>2.227 | .7183<br>.8097<br>.8909<br>.9897 | .3974<br>.4480<br>.4928<br>.5476 | 2981<br>3360<br>3696<br>4107<br>4620 | .1987<br>.2240<br>.2464<br>.2738 | 1490<br>1680<br>1848<br>2053              | .1192<br>.1344<br>.1478<br>.1643          | 0994<br>1120<br>1232<br>1369<br>1540      | .0745<br>.0840<br>.0924<br>.1027          |  |  |
|                            | .002<br>.00175<br>.0015<br>.00125    | 7.864<br>8.987<br>10.485<br>12.582 | 5.089<br>5.937<br>7.125                | 2.545<br>2.969<br>3.563                   | 1.272<br>1.484<br>1.781          | .7040<br>.8213<br>.9856          | .5280<br>.6160<br>.7392              | .3520<br>.4107<br>.4928          | .2640<br>.3080<br>.3696                   | .2112<br>.2464<br>.2957                   | .1760<br>.2053<br>.2464                   | .1320<br>.1540<br>.1848                   |  |  |
|                            | .001                                 | 17.813                             | 8.906                                  | 4.453                                     | 2.227                            | 1.232                            | .9240                                | .6160                            | .4620                                     | .3696                                     | .3080                                     | .2310                                     |  |  |

All sizes to the left of the double line are rolled with round edges. Resistances of these sizes are calculated according to the method advocated by the American Society for Testing Materials. That is, if the width to thickness ratio of a round edged strip is less than 15 to 1, the cross sectional area shall be considered 6% less than a true rectangle when calculating the resistance.

If the width to thickness ratio is greater than 15 to 1, the cross sectional area shall be considered 17% less than a true rectangle.

Resistances to the right of the double line are figured for square edged strip.

All resistances below the solid black line are for sizes with a width to thickness ratio greater than 15 to 1.

# $CUPRON^{*}$

### Feet Per Pound of Ribbon

| Thic  | kness  |         |               |       |         | WIDTH                     | I IN INC | HES                                 |           |             |             |             |
|-------|--------|---------|---------------|-------|---------|---------------------------|----------|-------------------------------------|-----------|-------------|-------------|-------------|
| B & S | Inches | .015625 | √s₂<br>.03125 | .0625 | .125    | 3/ <sub>16</sub><br>.1875 | .250     | <sup>3</sup> / <sub>8</sub><br>.375 | ½<br>.500 | 5/8<br>.625 | 3⁄4<br>.750 | 1″<br>1.000 |
| 10    | .102   |         |               |       |         |                           |          |                                     |           |             |             |             |
| 11    | .091   |         |               |       |         |                           |          |                                     |           |             |             |             |
| 12    | .081   |         |               |       |         |                           |          |                                     |           |             |             |             |
| 13    | .072   |         |               |       |         |                           |          |                                     |           | 0.4         |             | 4.0         |
| 14    | .064   |         |               |       |         |                           |          |                                     | 8.1       | 6.4         | 5.4         | 4.0         |
| 15    | .057   |         |               |       |         |                           |          |                                     | 9.1       | 7.2         | 6.0         | 4.5         |
| 16    | .051   |         |               |       |         |                           |          |                                     | 10.1      | 8.1         | 6.7         | 5.0         |
| 17    | .045   |         |               |       |         |                           |          |                                     | 11.5      | 9.2         | 7.6         | 5.7         |
| 18    | .040   |         |               |       |         |                           |          |                                     | 12.9      | 10.3        | 8.6         | 6.4<br>7.2  |
| 19    | .036   |         |               |       |         |                           |          |                                     | 14.4      | 11.5        | 9.6         | 1.2         |
| 20    | .032   |         | 276           | 139   | 69.0    | 46.0                      | 34.5     | 21.6                                | 16.2      | 12.9        | 10.8        | 8.1         |
| 21    | .0285  |         | 310           | 155   | 77.5    | 51.7                      | 38.7     | 24.3                                | 18.2      | 14.5        | 12.1        | 9.1         |
| 22    | .0253  |         | 350           | 174   | 87.3    | 58.2                      | 43.6     | 27.3                                | 20.5      | 16.4        | 13.6        | 10.2        |
| 23    | .0226  |         | 391           | 195   | 97.8    | 61.2                      | 45.9     | 30.6                                | 22.9      | 18.4        | 15.3        | 11.4        |
| 24    | .0201  |         | 440           | 221   | 110.0   | 69.2                      | 51.9     | 34.6                                | 25.9      | 20.7        | 17.3        | 12.9        |
| 25    | .0179  |         | 494           | 247   | 123.0   | 77.4                      | 58.0     | 38.7                                | 29.0      | 23.2        | 19.3        | 14.5        |
| 26    | .0159  |         | 557           | 278   | 139.0   | 87.0                      | 65.3     | 43.5                                | 32.6      | 26.1        | 21.7        | 16.3        |
| 27    | .0142  |         | 623           | 311   | 155.0   | 97.4                      | 73.1     | 48.7                                | 36.5      | 29.2        | 24.3        | 18.2        |
| 28    | .0126  |         | 703           | 350   | 176.0   | 109.8                     | 82.4     | 54.9                                | 41.2      | 32.9        | 27.5        | 20.6        |
| 29    | .0113  |         | 783           | 391   | 195.0   | 122.6                     | 91.9     | 61.3                                | 45.9      | 36.7        | 30.7        | 23.0        |
| 30    | .010   | 1,770   | 884           | 449   | 221.0   | 138.4                     | 103.0    | 69.2                                | 51.9      | 41.5        | 34.6        | 26.0        |
| 31    | .0089  | 1,989   | 993           | 496   | 248.0   | 155.6                     | 116.0    | 77.8                                | 58.3      | 46.7        | 39.0        | 29.2        |
| 32    | .008   | 2,213   | 1,105         | 552   | 313.0   | 173.2                     | 129.0    | 86.6                                | 65.0      | 52.0        | 43.3        | 32.5        |
| 33    | .0071  | 2,493   | 1,245         | 622   | 352.0   | 195.0                     | 146.0    | 97.5                                | 73.2      | 58.7        | 49.5        | 36.6        |
| 34    | .0063  | 2,810   | 1,403         | 699   | 397.0   | 218.0                     | 164.0    | 109.0                               | 82.5      | 66.0        | 55.0        | 41.2        |
| 35    | .0056  | 3,161   | 1,579         | 789   | 447.0   | 246.0                     | 185.0    | 123.0                               | 92.8      | 74.3        | 62.0        | 46.4        |
| 36    | .005   | 3,540   | 1,768         | 884   | 500.0   | 276.0                     | 207.0    | 138.0                               | 104.0     | 83.3        | 69.3        | 52.0        |
| 37    | .0045  | 3,934   | 1,965         | 982   | 556.0   | 306.0                     | 230.0    | 153.0                               | 115.5     | 92.5        | 77.0        | 57.7        |
| 38    | .004   | 4,426   | 2,211         | 1,252 | 626.0   | 346.0                     | 259.0    | 173.0                               | 130.0     | 104.0       | 86.7        | 65.0        |
| 39    | .0035  | 5,058   | 2,526         | 1,430 | 715.0   | 394.0                     | 296.0    | 197.0                               | 148.5     | 119.0       | 99.0        | 74.2        |
| 40    | .0031  | 5,710   | 2,855         | 1,617 | 808.5   | 447.3                     | 335.5    | 223.7                               | 167.7     | 134.2       | 111.8       | 83.9        |
|       | .00275 | 6,437   | 3,219         | 1,823 | 911.3   | 504.2                     | 378.2    | 252.1                               | 189.1     | 151.3       | 126.1       | 94.5        |
|       | .0025  | 7,081   | 3,540         | 2,005 | 1,000.3 | 554.7                     | 416.0    | 277.3                               | 208.0     | 166.4       | 138.7       | 104.0       |
|       | .00225 | 7,868   | 3,934         | 2,228 | 1,114.0 | 616.3                     | 462.2    | 308.1                               | 231.1     | 184.9       | 154.1       | 115.6       |
|       | .002   | 8,851   | 5,012         | 2,506 | 1,253.0 | 693.3                     | 520.0    | 346.7                               | 260.0     | 208.0       | 173.3       | 130.0       |
|       | .00175 | 10,116  | 5,728         | 2,864 | 1,432.0 | 792.4                     | 594.3    | 396.2                               | 297.1     | 237.7       | 198.1       | 148.6       |
|       | .0015  | 11,802  | 6,683         | 3,341 | 1,670.7 | 924.4                     | 693.3    | 462.2                               | 346.7     | 277.3       | 231.1       | 173.3       |
|       | .00125 | 14,162  | 8,019         | 4,010 | 2,004.8 | 1,109.3                   | 832.0    | 554.7                               | 416.0     | 332.8       | 277.3       | 208.0       |
|       | .001   | 20,049  | 10,024        | 5,012 | 2,506.0 | 1,386.7                   | 1,040.0  | 693.3                               | 520.0     | 416.0       | 346.7       | 260.0       |

# $CUPRON^{\ast}$

### List Price Per Pound of Ribbon

| Thic  | kness  | WIDTH IN INCHES |        |       |       |               |           |           |       |             |  |  |  |
|-------|--------|-----------------|--------|-------|-------|---------------|-----------|-----------|-------|-------------|--|--|--|
| B & S | Inches | .015625         | .03125 | .0625 | .125  | 3/16<br>.1875 | ½<br>.250 | ¾<br>.375 | .500  | ¾ to<br>1 ¾ |  |  |  |
| 10    | .102   |                 |        |       |       |               |           |           |       |             |  |  |  |
| 11    | .091   |                 |        |       |       |               |           |           |       |             |  |  |  |
| 12    | .081   |                 |        |       |       |               |           |           |       |             |  |  |  |
| 13    | .072   |                 |        |       |       |               |           |           |       |             |  |  |  |
| 14    | .064   |                 |        | 2.25  | 2.05  | 2.05          | 1.85      | 1.85      | 1.65  | 1.65        |  |  |  |
| 15    | .057   |                 |        | 2.25  | 2.05  | 2.05          | 1.85      | 1.85      | 1.65  | 1.65        |  |  |  |
| 16    | .051   |                 |        | 2.30  | 2.10  | 2.10          | 1.90      | 1.90      | 1.70  | 1.70        |  |  |  |
| 17    | .045   |                 |        | 2.30  | 2.10  | 2.10          | 1.90      | 1.90      | 1.70  | 1.70        |  |  |  |
| 18    | .040   |                 |        | 2.35  | 2.15  | 2.15          | 1.95      | 1.95      | 1.75  | 1.75        |  |  |  |
| 19    | .036   |                 |        | 2.35  | 2.15  | 2.15          | 1.95      | 1.95      | 1.75  | 1.75        |  |  |  |
| 20    | .032   |                 |        | 2.40  | 2.20  | 2.20          | 2.00      | 2.00      | 1.80  | 1.80        |  |  |  |
| 21    | .0285  |                 |        | 2.45  | 2.25  | 2.25          | 2.05      | 2.05      | 1.85  | 1.85        |  |  |  |
| 22    | .0253  |                 |        | 2.50  | 2.30  | 2.30          | 2.10      | 2.10      | 1.90  | 1.90        |  |  |  |
| 23    | .0226  |                 |        | 2.55  | 2.35  | 2.35          | 2.15      | 2.15      | 1.95  | 1.95        |  |  |  |
| 24    | .0201  |                 |        | 2.60  | 2.40  | 2.40          | 2.20      | 2.20      | 2.00  | 2.00        |  |  |  |
| 25    | .0179  |                 |        | 2.70  | 2.50  | 2.50          | 2.30      | 2.30      | 2.05  | 2.05        |  |  |  |
| 26    | .0159  |                 | 4.57   | 2.80  | 2.60  | 2.60          | 2.40      | 2.40      | 2.10  | 2.10        |  |  |  |
| 27    | .0142  |                 | 4.73   | 2.90  | 2.70  | 2.70          | 2.50      | 2.50      | 2.20  | 2.20        |  |  |  |
| 28    | .0126  |                 | 4.89   | 3.00  | 2.80  | 2.80          | 2.60      | 2.60      | 2.30  | 2.30        |  |  |  |
| 29    | .0113  |                 | 5.05   | 3.10  | 2.90  | 2.90          | 2.70      | 2.70      | 2.40  | 2.40        |  |  |  |
| 30    | .010   |                 | 5.25   | 3.20  | 3.00  | 3.00          | 2.80      | 2.80      | 2.50  | 2.50        |  |  |  |
| 31    | .0089  |                 | 5.35   | 3.30  | 3.10  | 3.10          | 2.90      | 2.90      | 2.60  | 2.60        |  |  |  |
| 32    | .008   | 9.10            | 5.45   | 3.40  | 3.20  | 3.20          | 3.00      | 3.00      | 2.80  | 2.80        |  |  |  |
| 33    | .0071  | 9.55            | 5.75   | 3.50  | 3.30  | 3.30          | 3.20      | 3.20      | 3.00  | 3.00        |  |  |  |
| 34    | .0063  | 10.05           | 6.10   | 3.70  | 3.50  | 3.50          | 3.40      | 3.40      | 3.20  | 3.20        |  |  |  |
| 35    | .0056  | 10.90           | 6.60   | 3.90  | 3.70  | 3.70          | 3.60      | 3.60      | 3.40  | 3.4         |  |  |  |
| 36    | .005   | 11.75           | 7.15   | 4.20  | 4.00  | 4.00          | 3.90      | 3.90      | 3.70  | 3.70        |  |  |  |
| 37    | .0045  | 12.45           | 7.50   | 4.50  | 4.40  | 4.40          | 4.30      | 4.30      | 4.20  | 4.20        |  |  |  |
| 38    | .004   | 13.45           | 7.95   | 5.10  | 5.10  | 5.10          | 5.00      | 5.00      | 5.00  | 5.00        |  |  |  |
| 39    | .0035  | 14.45           | 8.35   | 6.10  | 6.10  | 6.45          | 6.60      | 6.80      | 6.95  | 7.6         |  |  |  |
| 40    | .0031  | 16.35           | 9.60   | 7.60  | 7.60  | 7.85          | 8.20      | 8.65      | 8.85  | 10.2        |  |  |  |
|       | .00275 | 18.35           | 11.20  | 9.20  | 8.40  | 9.50          | 10.15     | 10.80     | 11.40 | 12.9        |  |  |  |
|       | .0025  | 20.70           | 12.75  | 10.80 | 10.00 | 11.95         | 13.50     | 15.25     | 17.15 | 19.3        |  |  |  |
|       | .00225 | 23.10           | 14.75  | 13.15 | 12.35 | 16.15         | 18.20     | 20.40     | 22.85 | 25.6        |  |  |  |
|       | .0020  | 25.90           | 17.15  | 16.35 | 15.55 | 21.05         | 23.60     | 26.35     | 29.55 | 33.0        |  |  |  |
|       | .00175 | 29.10           | 20.70  | 20.70 | 21.10 | 25.90         | 29.00     | 32.40     | 36.25 | 40.4        |  |  |  |
|       | .0015  | 32.25           | 24.30  | 24.30 | 29.30 | 32.80         | 36.70     | 41.00     | 45.80 | 51.1        |  |  |  |
|       | .00125 | 41.55           | 37.45  | 37.45 | 44.05 | 48.80         | 51.45     | 54.30     | 57.25 | 63.8        |  |  |  |
|       | .001   | 56.25           | 50.55  | 50.55 | 57.85 | 61.05         | 64.30     | 66.95     | 70.60 | 78.6        |  |  |  |

# LOW RESISTANCE ALLOYS

No. 30, No. 60, No. 90 and No. 180 Alloys are composed of copper and nickel.

They provide resistances between that of copper and Cupron. The number of the alloy signifies the ohms per circular mil foot. All of these alloys are supplied in wire, ribbon and strip, or in the wire form insulated with enamel, silk, nylon, cotton or glass.

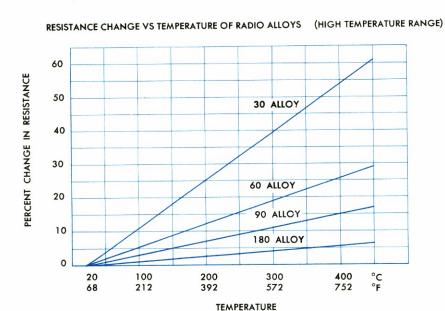



Chart below shows resistance changes in temperatures from —70° C. to +100° C.



# No. 30 ALLOY

#### Resistance, Weight and Price of Wire

Resistivity 30 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .321 lbs. Specific Gravity 8.92

| Temperati | ure °C.           | 20    | 100                   | 150               | 200          | 250         | 300   | 350              | 400      | 450                                  |  |  |  |  |  |      |
|-----------|-------------------|-------|-----------------------|-------------------|--------------|-------------|-------|------------------|----------|--------------------------------------|--|--|--|--|--|------|
| Temperat  | ure °F.           | 68    | 212                   | 302               | 392          | 482         | 572   | 662              | 752      | 842                                  |  |  |  |  |  |      |
| Factor    |                   | 1.000 | 1.120                 | 1.175             | 1.250        | 1.325       | 1.395 | 1.470            | 1.540    | 1.612                                |  |  |  |  |  |      |
| B&S       | Dia. in<br>Inches | -     | Per Ft.<br>C. (68°F.) |                   | ms<br>Pound  | Fe<br>Per P |       | Pound<br>Per M F |          | List Price<br>Per Pound<br>Bare Wire |  |  |  |  |  |      |
| 11        | .091              | .0    | 0362                  |                   | .143         | ;           | 39.7  | 25.1             |          | 1.36                                 |  |  |  |  |  |      |
| 12        | .081              |       | 0457                  |                   | . 228        |             | 50.1  | 19.9             |          | 1.39                                 |  |  |  |  |  |      |
| 13        | .072              |       | 0578                  |                   | .366         |             | 63.4  | 15.7             |          | 1.42                                 |  |  |  |  |  |      |
| 14        | .064              | .0    | 0732                  |                   | .587         | 80.2        |       | 12.4             |          | 1.45                                 |  |  |  |  |  |      |
| 15        | .057              | .0    | 00923                 |                   | . 932        | 1           | 01.   | 9.90             |          | 1.48                                 |  |  |  |  |  |      |
| 16        | .051              | .(    | )115                  | 1.44              |              | 126.        |       | 7.93             |          | 1.51                                 |  |  |  |  |  |      |
| 17        | .045              |       | 0148                  |                   | 2.39         | 162.        |       | 6.17             |          | 1.55                                 |  |  |  |  |  |      |
| 18        | .040              | .(    | 0187                  |                   | 3.83         | 205.        |       | 4.87             |          | 1.60                                 |  |  |  |  |  |      |
| 19        | .036              | .(    | 0231                  |                   | 5.84         | 2           | 53.   | 3.95             | ,        | 1.65                                 |  |  |  |  |  |      |
| 20        | .032              | .(    | 0292                  |                   | 9.37         | 321.        |       | 3.11             |          | 1.70                                 |  |  |  |  |  |      |
| 21        | .0285             | . (   | 0369                  |                   | 14.9         | 4           | .04.  | 2.47             |          | 1.75                                 |  |  |  |  |  |      |
| 22        | .0253             | .(    | 0468                  |                   | 24.0         | 5           | 13.   | 1.94             | <u> </u> | 1.80                                 |  |  |  |  |  |      |
| 23        | .0226             |       | 0587                  |                   | 37.7         | 6           | 43.   | 1.55             | 5        | 1.85                                 |  |  |  |  |  |      |
| 24        | .0201             |       | 0750                  |                   | 61.6         | 8           | 322.  | 1.21             |          | 1.90                                 |  |  |  |  |  |      |
| 25        | .0179             |       | 0936                  |                   | 96.0         | 1,0         | )26.  | .97              | 74       | 2.00                                 |  |  |  |  |  |      |
| 26        | .0159             |       | 118                   | 1                 | 153.         |             | 300.  | . 769            |          | 2.10                                 |  |  |  |  |  |      |
| 27        | .0142             |       | 148                   | 2                 | 241.         | 1,631.      |       | . 613            |          | 2.25                                 |  |  |  |  |  |      |
| 28        | .0126             | 1     | 189                   |                   | <b>392</b> . | 2,078       |       | . 48             |          | 2.40                                 |  |  |  |  |  |      |
| 29        | .0113             |       | 234                   |                   | 502.         | 1           | 575.  | .38              | 9/9/     | 2.55                                 |  |  |  |  |  |      |
| 30        | .010              |       | 300                   | 6                 | 986.         | 3,2         | 289.  | .30              | 04       | 2.70                                 |  |  |  |  |  |      |
| 31        | .0089             |       | 387                   |                   | 606.         |             | 152.  | . 24             |          | 2.90                                 |  |  |  |  |  |      |
| 32        | .008              |       | 468                   |                   | 105.         |             | 139.  |                  | 94       | 3.10                                 |  |  |  |  |  |      |
| 33        | .0071             |       | 595                   |                   | 381.         | 1           | 524.  |                  | 53       | 3.30                                 |  |  |  |  |  |      |
| 34        | .0063             |       | 755                   |                   | 255 .        |             | 286   |                  | 20       | 3.70                                 |  |  |  |  |  |      |
| 35        | .0056             |       | 956                   | 10,0              | 025 .        | 10,         | 487.  | .0               | 95       | 4.50                                 |  |  |  |  |  |      |
| 36        | .005              | 1.    | 20                    | 15,7              | 787.         | 1           | 156.  |                  | 76       | 5.50                                 |  |  |  |  |  |      |
| 37        | .0045             | 1     | . 49                  | 24,199.           |              |             |       | 16,241.          |          |                                      |  |  |  |  |  | 7.00 |
| 38        | .004              | 1000  | .87                   | 38,439. 20,556048 |              |             |       |                  |          |                                      |  |  |  |  |  |      |
| 39        | .0035             | 1     | . 44                  | 65,509. 26,848    |              |             |       | 1000             | 12.00    |                                      |  |  |  |  |  |      |
| 40        | .0031             | 3     | .12                   | 106,              | 778.         | 34,         | 224.  | .0               | )29      | 16.00                                |  |  |  |  |  |      |

# No. 60 ALLOY

### Resistance, Weight and Price of Wire

Resistivity 60 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .321 lbs. Specific Gravity 8.92

| Temperat | ure °C.           | 20                 | 100   | 150          | 200   | 250     | 300   | 350                  | 400   | 450                            |
|----------|-------------------|--------------------|-------|--------------|-------|---------|-------|----------------------|-------|--------------------------------|
| Temperat | ure °F.           | 68                 | 212   | 302          | 392   | 482     | 572   | 662                  | 752   | 842                            |
| Factor   |                   | 1.000              | 1.085 | 1.132        | 1.185 | 1.235   | 1.285 | 1.340                | 1.390 | 1.445                          |
| B & S    | Dia. in<br>Inches | Ohms P<br>at 20°C. |       | Ohms<br>Pour |       | Feet P  |       | Pounds Per<br>M Feet | r Per | st Price<br>r Pound<br>re Wire |
| 11       | .091              | .007               | 724   |              | . 288 | 39.     | 80    | 25.5                 |       | 1.36                           |
| 12       | .081              | .009               | 914   |              | . 459 | 50.     | 25    | 19.9                 |       | 1.39                           |
| 13       | .072              | .011               | 15    |              | . 731 | 63.     | 60    | 15.7                 |       | 1.42                           |
| 14       | .064              | . 014              | 16    | 1            | .17   | 80.     | 50    | 12.4                 |       | 1.45                           |
| 15       | .057              | .018               | 34    | 1            | .85   | 101.    | 00    | 9.9                  |       | 1.48                           |
| 16       | .051              | .023               | 30    | 2            | .89   | 126.0   | 0     | 7.93                 |       | 1.51                           |
| 17       | .045              | . 029              | 96    | 4            | . 79  | 162.0   | 0     | 6.17                 |       | 1.55                           |
| 18       | .040              | . 03               | 75    | 7            | .72   | 206.0   | 0     | 4.85                 |       | 1.60                           |
| 19       | .036              | . 04               | 62    | 11           | .7    | 254.0   | 0     | 3.93                 |       | 1.65                           |
| 20       | .032              | . 058              | 85    | 18           | 3.8   | 322.0   | 0     | 3.10                 |       | 1.70                           |
| 21       | .0285             | . 07               | 38    | 29           | .9    | 406.0   | 00    | 2.46                 |       | 1.75                           |
| 22       | .0253             | . 09               | 37    | 48           | 3.2   | 515.0   | 00    | 1.94                 |       | 1.80                           |
| 23       | .0226             | .11                | 8     | 76           | 5.2   | 646.0   | 00    | 1.54                 |       | 1.85                           |
| 24       | .0201             | . 15               | 0     | 123          | 3.0   | 825.0   | Ю (   | 1.21                 |       | 1.90                           |
| 25       | .0179             | . 18               | 7     | 192          | 2.0   | 1,029.0 | 00    | .971                 |       | 2.00                           |
| 26       | .0159             | .23                | 8     | 310          | 0.0   | 1,305   | .00   | . 766                |       | 2.10                           |
| 27       | .0142             | . 29               | 7     | 485          | 5.0   | 1,636   | .00   | .611                 |       | 2.25                           |
| 28       | .0126             | .37                | 7     | 783          | 3.0   | 2,078   | .00   | . 481                |       | 2.40                           |
| 29       | .0113             | . 46               | 9     | 1,216        | 6.0   | 2,584   | .00   | . 386                |       | 2.55                           |
| 30       | .010              | . 60               | 0     | 1,980        | 0.0   | 3,300   | .00   | .303                 |       | 2.70                           |
| 31       | .0089             | . 75               | 7     | 3,153        | 3.0   | 4,166   | .00   | . 240                |       | 2.90                           |
| 32       | .008              | .93                | 7     | 4,83         | 1.0   | 5,156   | .00   | . 193                |       | 3.10                           |
| 33       | .0071             | 1.19               |       | 7,789        | 0.6   | 6,546   | .00   | . 152                |       | 3.30                           |
| 34       | .0063             | 1.51               |       | 12,554       | 4.0   | 8,314   | .00   | .120                 |       | 3.70                           |
| 35       | .0056             | 1.91               |       | 20,097       | 7.0   | 10,522  | .00   | . 095                |       | 4.50                           |
| 36       | .005              | 2.40               | )     | 31,680       | 0.0   | 13,200  | .00   | .075                 |       | 5.50                           |
| 37       | .0045             | 2.96               |       | 48,23        | 6.0   | 16,296  | .00   | .061                 |       | 7.00                           |
| 38       | .004              | 3.75               |       | 77,34        | 3.0   | 20,625  | .00   | .048                 |       | 9.00                           |
| 39       | .0035             | 4.89               | )     | 131,72       | 6.0   | 26,938  | .00   | .037                 |       | 12.00                          |
| 40       | .0031             | 6.24               | Į.    | 214,27       | 5.0   | 34,339  | .00   | .029                 |       | 16.00                          |

# No. 90 ALLOY

### Resistance, Weight and Price of Wire

Resistivity 90 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .323 lbs. Specific Gravity 8.96

|          |                   |       |                    |             |         |                |         | 0.00                 | 400     | 45                                   |       |          |      |           |   |      |
|----------|-------------------|-------|--------------------|-------------|---------|----------------|---------|----------------------|---------|--------------------------------------|-------|----------|------|-----------|---|------|
| Temperat | ure °C.           | 20    | 100                | 150         | 200     | 250            | 300     | 350                  | 400     | _                                    |       |          |      |           |   |      |
| Temperat | ure °F.           | 68    | 212                | 302         | 392     | 482            | 572     | 662                  | 752     |                                      |       |          |      |           |   |      |
| Factor   |                   | 1.000 | 1.030              | 1.050       | 1.070   | 1.090          | 1.110   | 1.130                | 1.150   | 1.17                                 |       |          |      |           |   |      |
| B & S    | Dia. in<br>Inches |       | Per Ft.<br>(68°F.) | Ohms<br>Pou |         | Feet I<br>Pour |         | Pounds Per<br>M Feet |         | List Price<br>Per Pound<br>Bare Wire |       |          |      |           |   |      |
|          |                   | 0     | 100                |             | . 430   |                | 9.5     | 25.3                 |         | 1.36                                 |       |          |      |           |   |      |
| 11       | .091              |       | 109                | .683        |         |                | 9.9     | 20.0                 |         | 1.39                                 |       |          |      |           |   |      |
| 12       | .081              |       | 137<br>173         | 1.09        |         |                | 3.2     | 15.8                 |         | 1.42                                 |       |          |      |           |   |      |
| 13       | .072<br>.064      |       | 219                | 1.75        |         | 80.0           |         | 12.5                 |         | 1:45                                 |       |          |      |           |   |      |
| 14<br>15 | .057              |       | 277                | 2.77        |         |                | 0.0     | 10.0                 |         | 1.48                                 |       |          |      |           |   |      |
| 16       | .051              | 0     | 346                | 4.35        |         | 126.0          |         | 7.94                 |         | 1.51                                 |       |          |      |           |   |      |
| 17       | .045              |       | 444                |             | 7.14    | 161.0          |         | 6.21                 |         | 1.55                                 |       |          |      |           |   |      |
| 18       | .040              |       | 562                | 1           | 1.4     | 20             | 4.0     | 4.90                 |         | 1.60                                 |       |          |      |           |   |      |
| 19       | .036              |       | 694                | 1           | 7.4     | 252.0          |         | 3.96                 |         | 1.65                                 |       |          |      |           |   |      |
| 20       | .032              | .0    | 879                | 2           | 28.1    |                | 28.1    |                      | 28.1    |                                      | 0.0   | 3.12     |      | 1.70      |   |      |
| 21       | .0285             | .1    | .11                | 4           | 44.7    |                | 3.0     | 2.48                 |         | 1.75                                 |       |          |      |           |   |      |
| 22       | .0253             | 0     | .39                | 1           | 71.1    | 51             | 2.0     | 1.95                 |         | 1.80                                 |       |          |      |           |   |      |
| 23       | .0226             | .1    | 76                 | 11          | 12.0    | 64             | 11.0    | 1.56                 |         | 1.85                                 |       |          |      |           |   |      |
| 24       | .0201             |       | 223                | 18          | 182.0   |                | 9.0     | 1.22                 |         | 1.90                                 |       |          |      |           |   |      |
| 25       | .0179             | .9    | 281                | 28          | 287.0   |                | 23.0    | . 97                 | 7       | 2.00                                 |       |          |      |           |   |      |
| 26       | .0159             | .:    | 356                | 4           | 461.0   |                | 461.0   |                      | 461.0   |                                      | 461.0 |          | 96.0 | . 77      | 1 | 2.10 |
| 27       | .0142             | .4    | 146                | 7:          | 724.0   |                | 724.0   |                      | 25.0    | 0 .615                               |       | 2.25     |      |           |   |      |
| 28       | .0126             |       | 567                | 1,1         | 74.0    | 2,0            | 71.0    | . 48                 |         | 2.40                                 |       |          |      |           |   |      |
| 29       | .0113             |       | 705                | 1,80        | 09.0    | 2,50           | 67.0    | 0 .389               |         | 2.55                                 |       |          |      |           |   |      |
| 30       | .010              | .9    | 900                | 2,9         | 2,950.0 |                | 2,950.0 |                      | 2,950.0 |                                      | 78.0  | .30      | 15   | 2.70      |   |      |
| 31       | .0089             | 1.    | 14                 | 4,7         | 17.0    | 4,1            | 38.0    | . 24                 |         | 2.90                                 |       |          |      |           |   |      |
| 32       | .008              | 1.    | 41                 | 7,2         | 26.0    |                | 21.0    | . 19                 |         | 3.10                                 |       |          |      |           |   |      |
| 33       | .0071             | 1.    | 78                 | 11,5        | 73.0    |                | 02.0    | . 15                 |         | 3.30                                 |       |          |      |           |   |      |
| 34       | .0063             | 2.    | 27                 | 18,7        | 47.0    | ,              | 59.0    | . 12                 |         | 3.70                                 |       |          |      |           |   |      |
| 35       | .0056             | 2.    | 87                 | 29,9        | 97.0    | 10,4           | 52.0    | . 09                 | 95      | 4.50                                 |       |          |      |           |   |      |
| 36       | .005              | 3.    | 60                 | 47,203.0    |         | 47,203.0       |         | 47,203.0             |         | 47,203.0                             |       | 13,112.0 |      | 12.0 .076 |   | 5.50 |
| 37       | .0045             | 4.    | 44                 | 71,870.0    |         | 16,187.0       |         | . 0                  |         | 7.00                                 |       |          |      |           |   |      |
| 38       | .004              | 5.    | 62                 | 115,136.0   |         |                | 87.0    | . 0-                 |         | 9.00                                 |       |          |      |           |   |      |
| 39       | .0035             |       | 41                 | 153,824.0   |         |                | 59.0    | . 03                 |         | 12.00                                |       |          |      |           |   |      |
| 40       | .0031             | 9.    | 36                 | 319,2       | 269.0   | 34,1           | 10.0    | .0                   | 29      | 16.00                                |       |          |      |           |   |      |

# No. 180 ALLOY

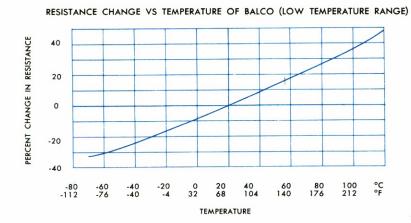
### Resistance, Weight and Price of Wire

Resistivity 180 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .322 lbs. Specific Gravity 8.95

| Temperat | ure °C.           | 20                 | 100   | 150          | 200   | 250            | 300     | 350                 | 400   | 450                               |
|----------|-------------------|--------------------|-------|--------------|-------|----------------|---------|---------------------|-------|-----------------------------------|
| Temperat | ure °F.           | 68                 | 212   | 302          | 392   | 482            | 572     | 662                 | 752   | 842                               |
| Factor   |                   | 1.000              | 1.010 | 1.018        | 1.025 | 1.032          | 1.040   | 1.047               | 1.057 | 1.060                             |
| B & S    | Dia. in<br>Inches | Ohms F<br>at 20°C. |       | Ohms<br>Pour |       | Feet P<br>Poun |         | Pounds Pe<br>M Feet | er Pe | ist Price<br>er Pound<br>are Wire |
| 11       | .091              | .02                | 17    |              | .857  | 39             | .5      | 25.3                |       | 1.36                              |
| 12       | .081              | .02                |       | 1            | .367  |                | .9      | 20.0                |       | 1.39                              |
| 13       | .072              | .03                |       |              | . 193 |                | .2      | 15.8                |       | 1.42                              |
| 14       | .064              | .04                |       |              | 5.512 |                | 0.0     | 12.5                |       | 1.45                              |
| 15       | .057              | .05                |       |              | 5.540 | 100            | 2008020 | 10.0                |       | 1.48                              |
| 16       | .051              | .06                | 92    | 8            | 3.719 | 126            | 3.0     | 7.94                |       | 1.51                              |
| 17       | .045              | .08                | 88    | 14           | 1.2   | 161            | 0       | 6.21                |       | 1.55                              |
| 18       | .040              | .11                | 25    | 22           | 2.9   | 204            | 1.0     | 4.90                |       | 1.60                              |
| 19       | .036              | . 13               | 88    | 34           | 1.9   | 252            | 2.0     | 3.96                |       | 1.65                              |
| 20       | .032              | .17                | 57    | 56           | 3.2   | 320            | 0.0     | 3.12                |       | 1.70                              |
| 21       | .0285             | . 22               | 216   | 89           | 9.3   | 7274758610     | 3.0     | 2.48                |       | 1.75                              |
| 22       | .0253             | . 28               |       | 143          |       | 512            |         | 1.95                |       | 1.80                              |
| 23       | .0226             | .35                | 524   |              | 5.0   |                | 1.0     | 1.56                |       | 1.85                              |
| 24       | .0201             |                    | 155   |              | 3.0   |                | 9.0     | 1.22                |       | 1.90                              |
| 25       | .0179             | . 56               | 317   | 57           | 4.0   | 1,023          | 3.0     | .977                |       | 2.00                              |
| 26       | .0159             |                    | 119   |              | 2.0   | 1,29           |         | .771                |       | 2.10                              |
| 27       | .0142             |                    | 926   | 1,45         |       | 1,62           |         | . 615               | 1     | 2.25                              |
| 28       | .0126             | 1.13               |       | 2,34         |       | 2,07           |         | .482                |       | 2.40                              |
| 29       | .0113             | 1.40               |       | 3,61         |       | 2,56           |         | .389                |       | 2.55                              |
| 30       | .010              | 1.80               | 000   | 5,90         | 0.0   | 3,27           | 8.0     | . 305               |       | 2.70                              |
| 31       | .0089             | 2.2                |       | 9,40         |       | 4,13           |         | . 241               |       | 2.90                              |
| 32       | .008              | 2.8                |       | 14,40        |       | 5,12           |         | . 195               |       | 3.10                              |
| 33       | .0071             | 3.5                |       | 23,21        |       | 6,50           |         | . 153               |       | 3.30                              |
| 34       | .0063             | 4.5                |       | 37,45        |       | 8,25           |         | . 121               |       | 3.70                              |
| 35       | .0056             | 5.7                | 397   | 59,99        | 0.0   | 10,45          | 2.0     | .095                |       | 4.50                              |
| 36       | .005              | 7.2                |       | 94,40        |       | 13,11          |         | .076                |       | 5.50                              |
| 37       | .0045             |                    | 888   | 143,88       |       | 16,18          |         | .061                |       | 7.00                              |
| 38       | .004              | 11.2               |       | 230,47       |       | 20,48          |         | .048                |       | 9.00                              |
| 39       | .0035             | 14.6               |       | 393,16       |       | 26,75          |         | .037                |       | 12.00                             |
| 40       | .0031             | 18.7               | 30    | 638,88       | 30.0  | 34,11          | 0.0     | . 029               | ,     | 16.00                             |

## **BALCO®**

Balco is an alloy of 70% Nickel and 30% Iron.


Balco is used in thermometer bulbs and other applications that require a high temperature coefficient of resistance. It has a temperature coefficient comparable to that of commercially Pure Nickel, and twice the resistivity. The slope of the temperature resistance curve is almost straight from minus 70 to 600°C.

It is supplied in wire and ribbon, and in wire form it can be insulated with enamel, silk, nylon, cotton or glass.

RESISTANCE CHANGE VS TEMPERATURE OF BALCO (HIGH TEMPERATURE RANGE) CHANGE IN RESISTANCE ERCENT °C 

Chart below shows resistance changes in temperatures ranging from  $-70^{\circ}\text{C}$  to  $+100^{\circ}\text{C}$ .

**TEMPERATURE** 



# $BALCO^{\circ}$

## Resistance Weight and Price of Wire

Resistivity 120 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .305 Lbs. Specific Gravity 8.46

| Те                               | emperature °C.                              | 20                                                  | 100  | 200                                                               | 300                               | 400                                                            | 500                     | 600                                                 | 700                                              |
|----------------------------------|---------------------------------------------|-----------------------------------------------------|------|-------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------|-------------------------|-----------------------------------------------------|--------------------------------------------------|
| Te                               | emperature °F.                              | 68                                                  | 212  | 392                                                               | 572                               | 752                                                            | 932                     |                                                     | 1292                                             |
| Fa                               | actor                                       | 1.00                                                | 1.40 | 1.97                                                              | 2.65                              | 3.33                                                           | 3.93                    | 4.48                                                | 4.98                                             |
| B & S                            | Dia. in<br>Inches                           | Ohms Per F<br>at 20°C. (68°F                        |      | Ohms Per P<br>Bare Wi                                             |                                   | Feet Per P<br>Bare Wi                                          |                         | Pounds Pe<br>M Feet                                 | List Price<br>Per Pound<br>Bare Wire             |
| 1<br>2<br>3<br>4<br>5            | .289<br>.258<br>.229<br>.204<br>.182        | .001437<br>.001803<br>.002288<br>.002884            |      | .00<br>.01<br>.02                                                 | 6015<br>9424<br>517<br>411<br>807 | 4.1<br>5.2<br>6.6<br>8.3                                       | 227<br>331<br>361       | 238.9<br>191.3<br>150.8<br>119.6<br>95.14           | \$ 1.60<br>1.60<br>1.60<br>1.60<br>1.60          |
| 6<br>7<br>8<br>9                 | .162<br>.144<br>.128<br>.114                | .004572<br>.005788<br>.007324<br>.009234<br>.01153  |      | . 06<br>. 09<br>. 15<br>. 24                                      | 6062<br>9712<br>656<br>471<br>856 | 13 .5<br>16 .'<br>21 .5<br>26 .'<br>33 .                       | 26<br>78<br>24<br>76    | 75 . 41<br>59 . 59<br>47 . 07<br>37 . 37<br>29 . 90 | 1.60<br>1.60<br>1.60<br>1.62<br>1.64             |
| 10<br>11<br>12<br>13<br>14       | .102<br>.091<br>.081<br>.072<br>.064        | .01449<br>.01829<br>.02314<br>.02930                |      | . 60                                                              | 066<br>696<br>53<br>89            | 41<br>53<br>67<br>84                                           | 86<br>02<br>11<br>96    | 23.89<br>18.86<br>14.90<br>11.77<br>9.332           | 1.66<br>1.69<br>1.72<br>1.75                     |
| 15<br>16<br>17<br>18<br>19       | .057<br>.051<br>.045<br>.040<br>.036        |                                                     |      | 6.1<br>10.1<br>16.3<br>24.8<br>39.7                               | 74<br>9<br>2<br>4                 | 133 .<br>171 .<br>217 .<br>268 .<br>339                        | 8<br>9<br>6<br>3        | 7 . 474<br>5 . 818<br>4 . 596<br>3 . 727<br>2 . 944 | 1.81<br>1.85<br>1.90<br>1.95<br>2.00             |
| 20<br>21<br>22<br>23<br>24       | .0285<br>.0253<br>.0226<br>.0201            | .1477<br>.1860<br>.2350<br>.2970<br>.3746           |      | 63.7<br>101.9<br>160.1<br>258.3<br>396.3                          | 5                                 | 431<br>547<br>681<br>869<br>1,087                              | 9<br>2<br>6             | 2.317<br>1.825<br>1.468<br>1.150<br>9201            | 2.10<br>2.20<br>2.30<br>2.45<br>2.60             |
| 25<br>26<br>27<br>28<br>29<br>30 | .0179<br>.0159<br>.0142<br>.0126<br>.0113   | . 4746<br>. 5952<br>. 7556<br>. 9398                |      | 653.5<br>1,027.0<br>1,648.0<br>2,606.0<br>4,177.0                 |                                   | 1,377<br>1,725<br>2,181<br>2,773<br>3,481                      | 0<br>0<br>0<br>0        | .7262<br>.5797<br>.4585<br>.3606<br>2873            | 2.75<br>2.95<br>3.20<br>3.45<br>3.70             |
| 31<br>32<br>33<br>34<br>35       | .0089<br>.008<br>.0071<br>.0063             | 1 .515<br>1 .875<br>2 .380<br>3 .022<br>3 .826      |      | 6,657.0<br>10,200.0<br>16,440.0<br>26,510.0<br>42,090.0           | )<br>)<br>)                       | 4,394<br>5,438<br>6,906<br>8,772                               | . 0<br>. 0<br>. 0       | .2276<br>.1839<br>.1448<br>.1140                    | 5.20                                             |
| 36<br>37<br>38<br>39<br>40       | .005<br>.0045<br>.004<br>.0035              | 4.800<br>5.926<br>7.500<br>9.796<br>12.49           |      | 66,820.0<br>101,900.0<br>163,100.0<br>278,500.0<br>452,900.0      | )<br>)<br>)                       | 13,920<br>17,190<br>21,750<br>28,430<br>36,260                 | .0                      | .0718<br>.0581<br>.0459<br>.0351<br>.0275           | 6 10.00<br>8 13.00<br>7 17.00                    |
| 40                               | .00275<br>.00275<br>.0025<br>.00225<br>.002 | 15.86<br>19.20<br>23.70<br>30.00<br>39.18           |      | 730,342 (1,069,363 (1,629,612 (2,610,750 (4,453,394 )             | 0<br>0<br>0                       | 46,029<br>55,696<br>68,760<br>87,025                           | .0<br>.0<br>.0          | .0217<br>.0179<br>.0145<br>.0114                    | 5 37 13<br>4 47 44<br>9 59 47                    |
|                                  | .0015<br>.0014<br>.0013<br>.0012            | 53 . 33<br>61 . 22<br>71 . 01<br>83 . 33<br>99 . 17 |      | 8,250,737<br>10,872,794<br>14,626,355<br>20,143,860<br>28,530,584 | 0<br>0<br>0<br>0                  | 154,711<br>177,602<br>205,976<br>241,736<br>287,685<br>348,100 | .0<br>2.0<br>3.0<br>3.0 | .0064<br>.0056<br>.0048<br>.0041<br>.0034           | 33 119.63<br>35 155.72<br>13 191.81<br>17 239.94 |

## PURE NICKEL

Grade "A"

Typical chemical analysis of commercially pure nickel:

| Nickel    | 99.45% |          |
|-----------|--------|----------|
| Copper    | .10    | .20 max. |
| Iron      | .15    | .30      |
| Carbon    | .10    | .20      |
| Manganese | .20    | .35      |
| Silicon   | .05    | .20      |
| Sulphur   | .005   | .008     |

### GENERAL CHARACTERISTICS

"A" Nickel is a commercially pure wrought nickel produced by melting and deoxidizing electrolytic nickel. It is easily drawn and worked, welds and silver solders readily, and its resistance to corrosion is of a high order. Oxidation at high temperatures is low and the scale is tightly adherent. Sufficient strength is retained at bombarding temperatures to prevent deformation during out-gassing. Its modulus of elasticity and damping factor are high, minimizing vibrational and microphonic effects. The electrical resistivity is moderate, about 60 ohms per circular mil ft., at 32° F., but the temperature coefficient is high so that it is easily spot welded and heated by induction, yet the conductivity at moderate temperatures is high enough to render it suitable as a current carrying lead. The high magnetostriction coefficient of nickel makes it useful in devices employing this principle. "A" Nickel is appropriate for many electrical and electronic applications. Nickel is magnetic at room temperature and becomes non-magnetic near 670° F.

#### TYPICAL USES

| Grid side rods  Base pins  Getter tabs  Plates (anodes)  Cathode shields in rectifier tubes  Woven wire mesh for grids  Lead-ins (w "Feeler wir Torsion wir Oscillator p Sliding con Spark gaps | tacts |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|

Pure Nickel is supplied in round wire, ribbon, and strip. The strip can be supplied in all widths up to 6'' and in thicknesses from .125'' to .0015''.

Pure Nickel strip is also supplied with a carbonized finish.

 $2\frac{1}{2}$  and 4% Manganese Nickel are also supplied.

# PURE NICKEL

#### Resistance Weight and Price of Wire

Resistivity 60 Ohms Per Circular Mil Foot at 20°C. (68°F.) Wt. Per Cubic Inch = .321 Lbs. Specific Gravity 8.9

| Tempera                          | ture °C.                                       | 20                                                        | 100                                                          | 200               | 300                                                         | 400                                               | 500                                      |
|----------------------------------|------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------|-------------------------------------------------------------|---------------------------------------------------|------------------------------------------|
| Tempera                          |                                                | 68                                                        | 212                                                          | 392               | 572                                                         | 752                                               | 932                                      |
| Factor                           |                                                | 1.00                                                      | 1.38                                                         | 1.97              | 2.70                                                        | 3.55                                              | 4.20                                     |
| B & S                            | Dia. in<br>Inches                              | Ohms Per Ft.<br>at 20°C. (68°F.)                          | Ohms Per Pour<br>Bare Wire                                   |                   | Per Pound<br>are Wire                                       | Pounds Per<br>M Feet                              | List Price<br>Per Pound<br>Bare Wire     |
| 000<br>00<br>0                   | .410<br>.365<br>.325<br>.289                   | .0003569<br>.0004504<br>.0005680<br>.0007184<br>.0009014  | .00048<br>.00112<br>.00178<br>.00286                         | 22<br>36<br>38    | 1.966<br>2.491<br>3.144<br>3.992<br>4.987                   | 508.5<br>401.5<br>318.1<br>250.5<br>200.5         | \$ 1.50<br>1.50<br>1.50<br>1.50<br>1.50  |
| 2<br>3<br>4<br>5<br>6            | .258<br>.229<br>.204<br>.182<br>.162           | .001144<br>.001442<br>.001811<br>.002286<br>.002894       | .00723<br>.01150<br>.01815<br>.02890<br>.04630               | 38<br>)<br>5<br>) | 6.327<br>7.974<br>10.02<br>12.64<br>16.00                   | 158.1<br>125.4<br>99.82<br>79.09<br>62.49         | 1.50<br>1.50<br>1.50<br>1.50<br>1.50     |
| 7<br>8<br>9<br>10<br>11          | .144<br>.128<br>.114<br>.102<br>.091           | .003662<br>.004617<br>.005767<br>.007246                  | .0741<br>.1179<br>.1839<br>.2891                             | 9                 | 20.26<br>25.53<br>31.89<br>39.90<br>50.57                   | 49.37<br>39.17<br>31.35<br>25.06<br>19.77         | 1.50<br>1.52<br>1.54<br>1.56<br>1.59     |
| 12<br>13<br>14<br>15<br>16       | .081<br>.072<br>.064<br>.057                   | .009145<br>.01157<br>.01465<br>.01847<br>.02307<br>.02963 | .7406<br>1.187<br>1.886<br>2.946<br>4.856                    |                   | 64.01<br>81.00<br>102.1<br>127.7<br>163.9                   | 15.62<br>12.35<br>9.788<br>7.836<br>6.100         | 1.62<br>1.65<br>1.68<br>1.71<br>1.75     |
| 17<br>18<br>19<br>20<br>21<br>22 | .045<br>.040<br>.036<br>.032<br>.0285<br>.0253 | .02965<br>.03750<br>.04630<br>.05859<br>.07387            | 7.778<br>11.85<br>18.99<br>30.39<br>48.16                    |                   | 207.4<br>256.0<br>324.1<br>411.4<br>513.8                   | 4.822<br>3.906<br>3.085<br>2.430<br>1.946         | 1.80<br>1.85<br>1.90<br>1.95<br>2.00     |
| 23<br>24<br>25<br>26<br>27       | .0226<br>.0201<br>.0179<br>.0159               | .1175<br>.1485<br>.1873<br>.2373<br>.2976                 | 76.32<br>121.9<br>194.0<br>311.6<br>489.8                    |                   | 649.5<br>821.0<br>1,036.0<br>1,313.0<br>1,646.0             | 1.539<br>1.218<br>.9655<br>.7619<br>.6076         | 2.05<br>2.10<br>2.20<br>2.30<br>2.45     |
| 28<br>29<br>30<br>31<br>32       | .0126<br>.0113<br>.010<br>.0089                | .3778<br>.4699<br>.6000<br>.7576                          | 789.6<br>1,241.0<br>1,991.0<br>3,174.0<br>4,861.0            |                   | 2,090 .0<br>2,642 .0<br>3,318 .0<br>4,189 .0<br>5,185 .0    | .4786<br>.3785<br>.3014<br>.2387<br>.1929         | 2.60<br>2.75<br>2.90<br>3.10<br>3.30     |
| 33<br>34<br>35<br>36<br>37       | .0071<br>.0063<br>.0056<br>.005                | 1 . 190<br>1 . 511<br>1 . 913<br>2 . 400<br>2 . 963       | 7,834.0<br>12,640.0<br>20,240.0<br>31,850.0<br>48,580.0      |                   | 6,583 .0<br>8,364 .0<br>10,580 .0<br>13,270 .0<br>16,400 .0 | . 1519<br>. 1196<br>. 09451<br>. 07534<br>. 06100 | 3.50<br>3.90<br>4.70<br>5.70<br>7.20     |
| 38<br>39<br>40                   | .004<br>.0035<br>.0031<br>.00275               | 3.750<br>4.898<br>6.243<br>7.937<br>9.600                 | 77,700.0<br>132,800.0<br>215,800.0<br>347,958.0<br>509,280.0 |                   | 20,740.0<br>27,110.0<br>34,570.0<br>43,840.0<br>53,050.0    | .04822<br>.03689<br>.02893<br>.02281<br>.01885    | 9.20<br>12.00<br>16.00<br>21.00<br>27.00 |
|                                  | .00225<br>.002<br>.00175<br>.0015              | 11.85<br>15.00<br>19.59<br>26.66                          | 776,530.0<br>1,243,770.0<br>2,120,000.0<br>3,932,083.0       |                   | 65,530.0<br>82,918.0<br>108,200.0<br>147,490.0              | .01526<br>.01206<br>.00924<br>.00678              | 35.00<br>45.00<br>60.00<br>80.00         |

Unless otherwise specified material listed above will be supplied soft temper. Prices of Enameled, Cotton and Silk covered Wires furnished on request. Pure Nickel is also furnished in Ribbon, Strip and Sheet. For prices of "Manganese Nickel" add 5c net to Pure Nickel net.

## PREMIUM POTENTIOMETER WIRE

Special facilities and processes are used for the manufacture of precision potentiometer wire. Wire designated for this end use is processed separately under close control to insure premium quality.

A thorough study of this field has provided information on how to produce and control the special properties which are required in potentiometer wire. A partial list of these properties follows.

Controlled Resistance: In addition to the control of resistance limits as close as plus or minus 3% within a shipment and less than 1% within a spool of wire, potentiometer manufacturers are interested in repeatable resistance within the wire at smaller intervals. We employ several methods for measuring this property termed linearity. One method compares the resistance ratios measured at two points separated by 5% of a 1,000 ft. length of wire. The largest difference between these ratios is held to .0001. Another method compares resistance readings at one foot intervals at several points throughout a sample. The processing of potentiometer wire is closely controlled throughout drawing, annealing, spooling and enameling to meet these linearity requirements.

Clean Surfaces: Potentiometer wire must have a surface free of oxides and other foreign material which might impair the electrical pickup between the wire surface and the contact material. Potentiometer wire is drawn in diamond dies and annealed and heat treated in protective atmospheres to insure a clean bright surface. Special cleaning operations can be used to meet premium applications.

Controlled Elongation: All potentiometer wire is produced with controlled elongation to meet customer specifications. Since many potentiometer manufacturers request wire in a relatively hard condition, processing methods have been perfected wherein very low elongation can be produced in wire having full resistance and temperature coefficient properties. For special applications wire can be produced with full electrical properties and a tensile strength greater than in the hard drawn condition.

Out-Of-Roundness: Premium wire is produced to very tight out-of-round tolerances. For example, potentiometer wire .003" diameter and smaller is held to a maximum out-of-round of .0001".

Alloys: Evanohm, Tophets, Cupron and 90 Alloy are the alloys most frequently used for potentiometer wire applications. Other alloys are also used, and new alloys are being developed for this specialized field. Test data is available on "noise" and life characteristics of these alloys when used with standard contact materials.

## INSULATED WIRE

We have a fully equipped insulating section to produce enamel, silk, nylon, glass or cotton insulated wires, either single or double covered. Formvar and liquid nylon insulation can also be supplied, the latter in colors if desired.

The use of glass insulation is rapidly gaining favor. Some of the advantages of glass insulation are:

- 1. Withstands high temperatures (750°F.)
- 2. High dielectric strength and insulation resistance
- 3. Non-hygroscopic; unaffected by moisture
- 4. High resistance to acids and corrosive vapors
- 5. Bonded with high grade insulating varnish if specified
- 6. Good heat conductivity
- 7. High resistance to abrasion

The following insulations are available with the desired size limitation shown:

Enameled, .0253 and finer
Formvar, .0113 and finer
Liquid Nylon (colors available), .0113 and finer
Silk, single or double, .001 and heavier
Glass, single or double, .002 and heavier
Nylon, single or double, .001 and heavier
Cotton, single or double, .002 and heavier

The following tables have been prepared showing the nominal outside diameters and other data on insulated wire. These tables are approximate and are intended to act as a guide to engineers in selecting the proper insulation for their specific requirements.

We welcome inquiries on all types of insulated resistance wire.

#### Enameled Wire

| B & S | Dia. in<br>Inches | Ohms     | Dia    | meter Over | Enamel | Approximate<br>Feet | Approximate<br>Ohms | Approximate<br>Turns |
|-------|-------------------|----------|--------|------------|--------|---------------------|---------------------|----------------------|
| D & S | Bare Wire         | Per Foot | Min.   | Normal     | Max.   | Per Pound           | Per Pound           | Per Inch             |
| 20    | .032              | . 6592   | .033   | .0334      | .0338  | 345.0               | 227.0               | 30.0                 |
| 21    | .0285             | .8310    | .0295  | . 0299     | .0303  | 440.0               | 366.0               | 33.4                 |
| 22    | .0253             | 1.055    | .0263  | .0267      | .0271  | 555.0               | 586.0               | 37.4                 |
| 23    | .0226             | 1.322    | . 0236 | .0238      | .0244  | 692.0               | 915.0               | 42.0                 |
| 24    | .0201             | 1.671    | .0209  | .0213      | .0218  | 880.0               | 1,470.0             | 47.0                 |
| 25    | .0179             | 2.107    | .0188  | .0191      | . 0196 | 1,100.0             | 2,320.0             | 52.4                 |
| 26    | .0159             | 2.670    | .0168  | .01685     | .0173  | 1,400.0             | 3,740.0             | 58.3                 |
| 27    | .0142             | 3.348    | .0149  | .01515     | .0155  | 1,750.0             | 5,860.0             | 66.0                 |
| 28    | .0126             | 4.251    | .0133  | .01355     | .0140  | 2,190.0             | 9,320.0             | 73.7                 |
| 29    | .0113             | 5.286    | .0120  | .01225     | .0126  | 2,800.0             | 14,800.0            | 81.7                 |
| 30    | .010              | 6.750    | . 0107 | .01095     | .0113  | 3,510.0             | 23,500.0            | 91.4                 |
| 31    | .0089             | 8.523    | .0095  | .00970     | .0100  | 4,430.0             | 27,800.0            | 103.0                |
| 32    | .008              | 10.55    | .0086  | .00880     | .0091  | 5,480.0             | 57,800.0            | 113.0                |
| 33    | .0071             | 13.39    | .0076  | .00775     | .0080  | 6,960.0             | 93,100.0            | 129.0                |
| 34    | .0063             | 17.00    | . 0068 | . 00695    | .0072  | 8,880.0             | 150,000.0           | 144.0                |
| 35    | .0056             | 21.52    | . 0060 | .00615     | .0064  | 11,200.0            | 241,000.0           | 162.0                |
| 36    | .005              | 27.00    | .0054  | . 00555    | .0058  | 14,000.0            | 378,000.0           | 180.0                |
| 37    | .0045             | 33.33    | .0048  | .00495     | .0052  | 17,300.0            | 576,000.0           | 202.0                |
| 38    | .004              | 42.19    | . 0043 | .00455     | .0048  | 21,900.0            | 965,000.0           | 224.0                |
| 39    | .0035             | 55.10    | .0037  | . 004      | . 0043 | 28,500.0            | 1,570,000.0         | 260.0                |
| 40    | .0031             | 70.24    | . 0033 | . 0036     | . 0039 | 36,300.0            | 2,540,000.0         | 290.0                |
|       | .00275            | 89.29    | .00277 | .00306     | .00335 | 46,500.0            | 4,150,000.0         | 328.0                |
|       | .0025             | 108.00   | .0027  | .0029      | .0031  | 55,300.0            | 5,970,000.0         | 357.0                |
|       | .00225            | 133.40   | .00244 | .00265     | .00285 | 68,200.0            | 9,100,000.0         | 392.0                |
|       | .002              | 168.80   | .0022  | .0024      | .0026  | 84,250.0            | 14,200,000.0        | 435.0                |
|       | .00175            | 220.60   | .00186 | .00205     | .00225 | 109,000.0           | 24,000,000.0        | 513.0                |
|       | .0015             | 300.00   | .0016  | .0018      | .002   | 139,000.0           | 41,700,000.0        | 587.0                |
|       | .0014             | 344.40   | .0015  | .0017      | .0019  | 168,000.0           | 57,800,000.0        | 625.0                |
|       | .0013             | 399.40   | .0014  | .0016      | .0018  | 194,000.0           | 77,500,000.0        | 667.0                |
|       | .0012             | 468.70   | .0013  | .0015      | .0017  | 227,000.0           | 106,400,000.0       | 714 0                |
|       | .0011             | 557.80   | .0012  | .0014      | .0016  | 268,000.0           | 149,000,000.0       | 769.0                |
|       | .001              | 675.00   | .0011  | .0013      | .0015  | 323,000.0           | 218,000,000.0       | 833.0                |

Turns per inch are based on the normal diameter of enameled wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920 For TOPHET A .975 and EVANOHM 1.01.

Single Silk Covered Wire

|       | Dia. in             |                  | Dia     | neter Over S | ilk     | Approximate       | Approximate<br>Ohms | Approximate<br>Turns |
|-------|---------------------|------------------|---------|--------------|---------|-------------------|---------------------|----------------------|
| B & S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.    | Normal       | Max.    | Feet<br>Per Pound | Per Pound           | Per Inch             |
| 22    | .0253               | 1.055            | .0267   | .0268        | .0273   | 552.0             | 583.0               | 37.3                 |
| 23    | .0226               | 1.322            | .0240   | .0242        | .0246   | 687.0             | 909.0               | 41.3                 |
| 24    | .0201               | 1.671            | .0215   | .0217        | .0221   | 872.0             | 1,410.0             | 46.0                 |
| 25    | .0179               | 2.107            | .0193   | .0195        | .0199   | 1,085.0           | 2,290.0             | 51.2                 |
| 26    | .0159               | 2.670            | .0173   | .0175        | .0179   | 1,368.0           | 2,650.0             | 57.8                 |
| 27    | .0142               | 3.348            | .0156   | .0158        | .0162   | 1,720.0           | 5,760.0             | 63.2                 |
| 28    | .0126               | 4.251            | .0140   | .0142        | .0146   | 2,170.0           | 9,250.0             | 70.3                 |
| 29    | .0113               | 5.286            | .0127   | .0129        | .0133   | 2,720.0           | 14,400.0            | 77.5                 |
| 30    | .010                | 6.750            | .0114   | .0116        | .0120   | 3,390.0           | 22,900.0            | 86.2                 |
| 31    | .0089               | 8.523            | .0103   | .0105        | .0109   | 4,260.0           | 36,300.0            | 95.2                 |
| 32    | .008                | 10.55            | . 0093  | .0095        | .0100   | 5,340.0           | 56,400.0            | 104.0                |
| 33    | .0071               | 13.39            | .0085   | .0087        | .0091   | 6,650.0           | 89,100.0            | 115.0                |
| 34    | .0063               | 17.00            | .0077   | . 0079       | .0083   | 8,250.0           | 140,500.0           | 126.5                |
| 35    | .0056               | 21.52            | .0070   | .0072        | .0076   | 10,380.0          | 223,000.0           | 139.0                |
| 36    | .005                | 27.00            | .0064   | .0066        | .0070   | 12,880.0          | 348,000.0           | 151.5                |
| 37    | .0045               | 33.33            | . 0059  | .0061        | . 0065  | 15,700.0          | 522,500.0           | 164.0                |
| 38    | .004                | 42.19            | .0054   | .0056        | .0060   | 19,100.0          | 805,000.0           | 178.5                |
| 39    | .0035               | 55.10            | .0049   | .0051        | . 0055  | 22,900.0          | 1,260,000.0         | 196.0                |
| 40    | .0031               | 70.24            | .0045   | .0047        | .0051   | 27,900.0          | 1,957,000.0         | 212.0                |
|       | .00275              | 89.29            | . 00415 | . 00430      | .00475  | 33,500.0          | 2,999,000.0         | 232.0                |
|       | .0025               | 108.00           | . 00390 | .00405       | .00450  | 38,000.0          | 4,110,000.0         | 247.0                |
|       | .00225              | 133.40           | .00365  | .00380       | .00425  | 44,000.0          | 5,875,000.0         | 263.0                |
|       | .002                | 168.80           | .00340  | .00355       | .00400  | 50,000.0          | 8,400,000.0         | 282.0                |
|       | .00175              | 220.60           | .00315  | . 00330      | .00375  | 58,200.0          | 12,800,000.0        | 303.0                |
|       | .0015               | 300.00           | .00290  | . 00300      | . 00350 | 63,200.0          | 18,950,000.0        | 333.0                |
|       | .0014               | 344.40           | .00280  | . 00295      | . 00340 | 71,500.0          | 24,600,000.0        | 339.0                |
|       | .0013               | 399.40           | .00270  | . 00285      | .00330  | 75,600.0          | 30,200,000.0        | 350.0                |
|       | .0012               | 468.70           | .00260  | .00275       | .00320  | 80,100.0          | 37,500,000.0        | 363.0                |
|       | .0011               | 557.80           | .00250  | .00265       | .00310  | 84,800.0          | 47,400,000.0        | 377.0                |
|       | .001                | 675.00           | .00240  | .00255       | .00300  | 89,900.0          | 60,700,000.0        | 392.0                |

Turns per inch are based on the normal diameter of S.S.C. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

Double Silk Covered Wire

|     | Dia. in             | 01               | Dia     | meter Over S      | Silk   | Approximate<br>Feet  | Approximate<br>Ohms        | Approximat<br>Turns |
|-----|---------------------|------------------|---------|-------------------|--------|----------------------|----------------------------|---------------------|
| B&S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.    | Normal            | Max.   | Per Pound            | Per Pound                  | Per Inch            |
|     |                     |                  |         | 0000              | 0000   | 740.0                | 570 O                      | 35.4                |
| 22  | .0253               | 1.055            | .0278   | .0283             | .0290  | 540.0                | 570.0                      | 39.1                |
| 23  | .0226               | 1.322            | .0251   | .0256             | .0263  | 670.0                | 887.0                      | 43.2                |
| 24  | .0201               | 1.671            | .0226   | .0231             | .0238  | 850.0                | 1,420.0                    | V 200 (100)         |
| 25  | .0179               | 2.107            | .0204   | .0209             | .0216  | 1,050.0              | 2,220.0                    | 47.8<br>52.8        |
| 26  | .0159               | 2.670            | .0184   | .0189             | .0196  | 1,330.0              | 3,420.0                    | 52.8                |
| 27  | .0142               | 3.348            | .0167   | .0172             | . 0179 | 1,660.0              | 6,560.0                    | 58.2                |
| 28  | .0126               | 4.251            | .0151   | .0156             | .0163  | 2,080.0              | 8,850.0                    | 64.0                |
| 29  | .0113               | 5.286            | .0138   | .0143             | .0150  | 2,590.0              | 13,700.0                   | 70.0                |
| 30  | .010                | 6.750            | .0125   | .0130             | .0137  | 3,280.0              | 22,150.0                   | 77.0                |
| 31  | .0089               | 8.523            | .0114   | .0119             | .0126  | 3,990.0              | 34,000.0                   | 84.0                |
| 32  | .008                | 10.55            | .0105   | .0110             | .0117  | 4,820.0              | 50,800.0                   | 91.0                |
| 33  | .0071               | 13.39            | .0096   | .0101             | .0108  | 5,975.0              | 80,000.0                   | 99.0                |
| 34  | .0063               | 17.00            | .0088   | .0093             | .0100  | 7,320.0              | 124,000.0                  | 107.5               |
| 35  | .0056               | 21.52            | .0081   | .0086             | .0093  | 9,100.0              | 196,000.0                  | 116.0               |
| 36  | .005                | 27.00            | .0075   | .0080             | .0087  | 11,000.0             | 297,000.0                  | 125.0               |
| 37  | .0045               | 33.33            | .0070   | .0075             | .0082  | 13,450.0             | 448,000.0                  | 133.0               |
| 38  | .0043               | 42.19            | .0065   | .0070             | .0077  | 15,900.0             | 670,000.0                  | 143.0               |
| 39  | .0035               | 55.10            | .0060   | .0065             | .0072  | 18,400.0             | 1,015,000.0                | 154.0               |
| 40  | .0033               | 70.24            | .0056   | .0061             | .0068  | 21,400.0             | 1,500,000.0                | 164.0               |
| 40  | .00275              | 89.29            | . 00525 | .00575            | .00645 | 28,600.0             | 2,555,000.0                | 174.0               |
|     | 0005                | 100.00           | 0050    | 0055              | 0000   | 20 500 0             | 2 510 000 0                | 182.0               |
|     | .0025               | 108.00           | .0050   | .0055             | .0062  | 32,500.0             | 3,510,000.0                | 190.0               |
|     | .00225              | 133.40<br>168.80 | .00475  | . 00525<br>. 0050 | .00595 | 37,600.0<br>45,000.0 | 5,020,000.0<br>7,600,000.0 | 200.0               |
|     | .002                | 220.60           | .0045   | .0050             | .00545 | 49,700.0             | 10,900,000.0               | 210.0               |
|     | .00175              | 300.00           | .00425  | .00475            | .00545 | 55,500.0             | 16,600,000.0               | 222.0               |
|     | .0113               | 300.00           | . 0040  | .0040             | .0002  | 00,000.0             | 10,000,000.0               | 222.0               |
|     | .0014               | 344.10           | .0039   | .0044             | . 0051 | 61,000.0             | 21,000,000.0               | 227.0               |
|     | .0013               | 399.40           | .0038   | .0043             | . 0050 | 64,500.0             | 25,800,000.0               | 232.0               |
|     | .0012               | 468.70           | .0037   | .0042             | .0049  | 68,500.0             | 32,200,000.0               | 238.0               |
|     | .0011               | 557.80           | .0036   | .0041             | .0048  | 72,500.0             | 40,300,000.0               | 244.0               |
|     | .001                | 675.00           | . 0035  | .0040             | .0047  | 77,500.0             | 52,300,000.0               | 250.0               |

Turns per inch are based on the normal diameter of D.S.C. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

Single Silk Enameled Wire

|       | Dia. in             |                  | Dian   | neter Over S | .S.E.  | Approximate       | Approximate       | Approximate<br>Turns |
|-------|---------------------|------------------|--------|--------------|--------|-------------------|-------------------|----------------------|
| B & S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.   | Normal       | Max.   | Feet<br>Per Pound | Ohms<br>Per Pound | Per Inch             |
| 22    | .0253               | 1.055            | .0279  | .0281        | .0288  | 546.0             | 576.0             | 35.6                 |
| 23    | .0226               | 1.322            | .0245  | . 0253       | .0260  | 683.0             | 905.0             | 40.8                 |
| 24    | .0201               | 1.671            | .0221  | .0227        | .0234  | 857.0             | 1,430.0           | 45.2                 |
| 25    | .0179               | 2.107            | . 0199 | .0205        | .0212  | 1,072.0           | 2,260.0           | 48.7                 |
| 26    | .0159               | 2.670            | .0179  | .0184        | .0191  | 1,358.0           | 3,620.0           | 54.3                 |
| 27    | .0142               | 3.348            | .0161  | .0167        | .0174  | 1,690.0           | 5,660.0           | 59.8                 |
| 28    | .0126               | 4.251            | .0145  | .0150        | .0157  | 2,110.0           | 8,970.0           | 66.7                 |
| 29    | .0113               | 5.286            | .0131  | .0137        | .0144  | 2,695.0           | 14,250.0          | 73.0                 |
| 30    | .010                | - 6.750          | .0118  | .0123        | .0130  | 3,320.0           | 22,400.0          | 81.2                 |
| 31    | .0089               | 8.523            | .0107  | .0112        | .0119  | 4,130.0           | 36,700.0          | 89.2                 |
| 32    | .008                | 10.55            | .0098  | .0103        | .0110  | 5,180.0           | 54,700.0          | 97.0                 |
| 33    | .0071               | 13.39            | .0087  | .0093        | .0100  | 6,920.0           | 92,600.0          | 107.5                |
| 34    | .0063               | 17.00            | .0080  | .0084        | .0091  | 8,020.0           | 136,000.0         | 119.0                |
| 35    | .0056               | 21.52            | .0072  | .0076        | .0084  | 11,200.0          | 249,000.0         | 131.5                |
| 36    | .005                | 27.00            | .0065  | .0070        | .0077  | 12,200.0          | 329,000.0         | 143.0                |
| 37    | .0045               | 33.33            | .0060  | .0064        | .0071  | 15,120.0          | 504,000.0         | 156.0                |
| 38    | .004                | 42.19            | .0055  | . 0059       | .0066  | 18,100.0          | 762,000.0         | 169.0                |
| 39    | .0035               | 55.10            | .0049  | . 0053       | . 0060 | 21,750.0          | 1,198,000.0       | 188.5                |
| 40    | 0 .0031             | 70.24            | .0045  | .0049        | .0056  | 26,600.0          | 1,588,000.0       | 204.0                |

Turns per inch are based on the normal diameter of S.S.E. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01

Double Silk Enameled Wire

|       | Dia. in             | 01               | Dia    | meter Over D | S.E.   | Approximate<br>Feet | Approximate<br>Ohms | Approximate<br>Turns |
|-------|---------------------|------------------|--------|--------------|--------|---------------------|---------------------|----------------------|
| B & S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.   | Normal       | Max.   | Per Pound           | Per Pound           | Per Inch             |
| 22    | .0253               | 1.055            | .0286  | .0297        | . 0304 | 534.0               | 564.0               | 33.6                 |
| 23    | .0226               | 1.322            | .0257  | .0269        | . 0276 | 665.0               | 880.0               | 37.2                 |
| 24    | .0201               | 1.671            | .0233  | .0244        | .0251  | 836.0               | 1,395.0             | 41.0                 |
| 25    | .0179               | 2.107            | .0211  | .0221        | .0228  | 1,038.0             | 2,180.0             | 45.2                 |
| 26    | .0159               | 2.670            | .0191  | .0200        | .0207  | 1,280.0             | 3,420.0             | 50.0                 |
| 27    | .0142               | 3.348            | .0173  | .0183        | .0190  | 1,580.0             | 5,500.0             | 54.6                 |
| 28    | .0126               | 4.251            | .0157  | .0166        | .0173  | 2,020.0             | 8,600.0             | 60.2                 |
| 29    | .0113               | 5.286            | .0143  | .0154        | .0161  | 2,480.0             | 13,100.0            | 65.0                 |
| 30    | .010                | 6.750            | .0130  | .0139        | .0146  | 3,130.0             | 21,100.0            | 72.0                 |
| 31    | .0089               | 8.523            | .0119  | .0129        | .0136  | 3,950.0             | 33,600.0            | 77.5                 |
| 32    | .008                | 10.55            | .0110  | .0119        | .0126  | 4,800.0             | 50,700.0            | 84.0                 |
| 33    | .0071               | 13.39            | .0100  | . 0109       | .0116  | 5,900.0             | 79,000.0            | 91.7                 |
| 34    | .0063               | 17.00            | . 0092 | .0100        | .0107  | 7,220.0             | 122,700.0           | 100.0                |
| 35    | .0056               | 21.52            | .0084  | .0092        | . 0099 | 8,900.0             | 191,000.0           | 108.7                |
| 36    | .005                | 27.00            | .0078  | .0086        | .0093  | 10,600.0            | 286,000.0           | 116.0                |
| 37    | .0045               | 33.33            | .0072  | .0080        | .0087  | 13,300.0            | 443,000.0           | 125.0                |
| 38    | .004                | 42.19            | .0067  | .0075        | .0082  | 15,600.0            | 657,000.0           | 133.0                |
| 39    | .0035               | 55.10            | .0061  | .0069        | .0076  | 18,300.0            | 964,000.0           | 145.0                |
| 40    | .0031               | 70.24            | .0057  | .0065        | .0071  | 20,600.0            | 1,448,000.0         | 154.0                |

Turns per inch are based on the normal diameter of D.S.E. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

Single Cotton Covered Wire

| <b>D</b> 4 C | Dia. in             | 01               | Diam   | neter Over C | otton  | Approximate<br>Feet | Approximate<br>Ohms | Approximate<br>Turns |
|--------------|---------------------|------------------|--------|--------------|--------|---------------------|---------------------|----------------------|
| B&S          | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.   | Normal       | Max.   | Per Pound           | Per Pound           | Per Inch             |
| 22           | .0253               | 1.055            | . 0293 | . 0298       | . 0303 | 534.0               | 564.0               | 33.5                 |
| 23           | .0226               | 1.322            | .0266  | .0271        | . 0276 | 665.0               | 880.:0              | 36.9                 |
| 24           | .0201               | 1.671            | .0241  | .0246        | .0251  | 836.0               | 1,395.0             | 40.7                 |
| 25           | .0179               | 2.107            | .0219  | .0224        | . 0229 | 1,038.0             | 2,180.0             | 44.6                 |
| 26           | .0159               | 2.670            | .0199  | .0204        | .0209  | 1,295.0             | 3,460.0             | 49.0                 |
| 27           | .0142               | 3.348            | .0182  | .0187        | . 0192 | 1,635.0             | 5,470.0             | 53.5                 |
| 28           | .0126               | 4.251            | .0166  | . 0171       | . 0176 | 2,020.0             | 8,600.0             | 58.5                 |
| 29           | .0113               | 5.286            | .0152  | .0158        | . 0163 | 2,560.0             | 13,500.0            | 63.2                 |
| 30           | .010                | 6.750            | .0140  | .0145        | . 0151 | 3,120.0             | 21,000.0            | 68.0                 |
| 31           | .0089               | 8.523            | .0129  | .0134        | .0139  | 3,860.0             | 33,000.0            | 74.5                 |
| 32           | .008                | 10.55            | .0120  | .0125        | .0131  | 4,780.0             | 50,500.0            | 80.0                 |
| 33           | .0071               | 13.39            | .0111  | .0116        | .0121  | 5,860.0             | 78,400.0            | 86.2                 |
| 34           | .0063               | 17.00            | .0102  | .0108        | .0113  | 7,060.0             | 120,000.0           | 92.5                 |
| 35           | .0056               | 21.52            | . 0095 | .0101        | .0106  | 8,500.0             | 183,000.0           | 99.0                 |
| 36           | .005                | 27.00            | . 0085 | . 0090       | . 0095 | 10,700.0            | 289,000.0           | 111.0                |
| 37           | .0045               | 33.33            | . 0080 | .0085        | . 0090 | 12,650.0            | 424,000.0           | 117.5                |
| 38           | .004                | 42.19            | .0075  | .0080        | .0085  | 14,650.0            | 617,000.0           | 125.0                |
| 39           | .0035               | 55.10            | . 0070 | . 0075       | . 0080 | 16,950.0            | 934,000.0           | 133.0                |
| 40           | .0031               | 70.24            | .0066  | .0071        | .0076  | 19,400.0            | 1,360,000.0         | 142.0                |

Turns per inch are based on the normal diameter of S.C.C. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

Double Cotton Covered Wire

| D 4 C | Dia. in             | 01               | Diame  | eter Over Co | tton   | Approximate<br>Feet | Approximate<br>Ohms | Approximate<br>Turns |
|-------|---------------------|------------------|--------|--------------|--------|---------------------|---------------------|----------------------|
| B & S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.   | Normal       | Max.   | Per Pound           | Per Pound           | Per Inch             |
| 22    | .0253               | 1.055            | . 0333 | .0338        | .0343  | 520.0               | 549.0               | 29.6                 |
| 23    | .0226               | 1.322            | . 0306 | .0311        | .0316  | 642.0               | 850.0               | 32.2                 |
| 24    | .0201               | 1.671            | .0281  | . 0286       | .0291  | 802.0               | 1,340.0             | 35.0                 |
| 25    | .0179               | 2.107            | .0259  | . 0264       | . 0269 | 987.0               | 2,080.0             | 37.9                 |
| 26    | .0159               | 2.670            | .0239  | .0244        | .0249  | 1,216.0             | 3,240.0             | 41.0                 |
| 27    | .0142               | 3.348            | .0222  | .0227        | .0232  | 1,540.0             | 5,150.0             | 44.0                 |
| 28    | .0126               | 4.251            | . 0206 | .0211        | .0216  | 1,870.0             | 7,950.0             | 47.3                 |
| 29    | .0113               | 5.286            | . 0193 | .0198        | .0203  | 2,300.0             | 12,150.0            | 50.5                 |
| 30    | .010                | 6.750            | .0180  | . 0185       | .0190  | 3,120.0             | 21,100.0            | 54.0                 |
| 31    | .0089               | 8.523            | .0169  | .0174        | . 0179 | 3,860.0             | 32,800.0            | 57.5                 |
| 32    | .008                | 10.55            | .0160  | .0165        | . 0170 | 4,170.0             | 44,000.0            | 60.5                 |
| 33    | .0071               | 13.39            | .0151  | .0156        | .0161  | 4,930.0             | 66,000.0            | 64.0                 |
| 34    | .0063               | 17.00            | .0143  | .0148        | .0153  | 5,760.0             | 98,000.0            | 67.5                 |
| 35    | .0056               | 21.52            | .0136  | .0141        | .0146  | 7,160.0             | 154,000.0           | 71.0                 |
| 36    | .005                | 27.00            | .0125  | .0130        | . 0135 | 7,640.0             | 206,000.0           | 77.0                 |
| 37    | .0045               | 33.33            | .0120  | .0125        | .0130  | 9,700.0             | 323,000.0           | 80.0                 |
| 38    | .004                | 42.19            | .0115  | .0120        | .0125  | 11,400.0            | 480,000.0           | 83.3                 |
| 39    | .0035               | 55.10            | .0110  | .0115        | .0120  | 12,400.0            | 683,000.0           | 87.0                 |
| 40    | .0031               | 70.24            | .0106  | .0111        | .0116  | 16,400.0            | 1,150,000.0         | 90.0                 |

Turns per inch are based on the normal diameter of D.C.C. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

Single Nylon Covered Wire

|     | Dia. in             | 01               | Diam   | eter Over N | ylon   | Approximate<br>Feet | Approximate<br>Ohms | Approximate<br>Turns |
|-----|---------------------|------------------|--------|-------------|--------|---------------------|---------------------|----------------------|
| B&S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.   | Normal      | Max.   | Per Pound           | Per Pound           | Per Inch             |
| 22  | .0253               | 1.055            | . 0263 | .027        | .0278  | 543.0               | 580.0               | 37.0                 |
| 23  | .0226               | 1.322            | .0237  | .024        | . 0250 | 683.0               | 907.0               | 41.7                 |
| 24  | .0201               | 1.671            | .0212  | .022        | .0225  | 860.0               | 1,440.0             | 45.4                 |
| 25  | .0179               | 2.107            | .0190  | .0196       | .0203  | 1,075.0             | 2,260.0             | 51.0                 |
| 26  | .0159               | 2.670            | .0170  | .0175       | .0183  | 1,365.0             | 3,620.0             | 57.1                 |
| 27  | .0142               | 3.348            | .0154  | . 0159      | .0165  | 1,700.0             | 5,860.0             | 63.0                 |
| 28  | .0126               | 4.251            | .0138  | .0143       | .0149  | 2,160.0             | 9,200.0             | 70.0                 |
| 29  | .0113               | 5.286            | .0125  | .0130       | . 0136 | 2,670.0             | 14,100.0            | 77.0                 |
| 30  | .010                | 6.750            | .0112  | .0117       | .0123  | 3,400.0             | 23,000.0            | 89.5                 |
| 31  | .0089               | 8.523            | .0101  | .0106       | .0112  | 4,260.0             | 36,200.0            | 94.5                 |
| 32  | .008                | 10.55            | .0092  | . 0097      | .0103  | 5,330.0             | 56,300.0            | 103.0                |
| 33  | .0071               | 13.39            | .0083  | .0088       | .0094  | 6,650.0             | 89,000.0            | 113.5                |
| 34  | .0063               | 17.00            | .0075  | .008        | .0086  | 8,370.0             | 142,500.0           | 125.0                |
| 35  | .0056               | 21.52            | .0068  | .0073       | . 0079 | 10,500.0            | 226,000.0           | 137.0                |
| 36  | .005                | 27.00            | . 0062 | .0067       | .0073  | 12,800.0            | 346,000.0           | 149.0                |
| 37  | .0045               | 33.33            | .0057  | .0062       | .0068  | 15,400.0            | 513,000.0           | 161.0                |
| 38  | .004                | 42.19            | .0052  | .0057       | .0063  | 19,190.0            | 810,000.0           | 175.0                |
| 39  | .0035               | 55.10            | .0047  | .0052       | .0058  | 24,500.0            | 1,350,000.0         | 192.0                |
| 40  | .0031               | 70.24            | .0043  | .0046       | .0054  | 29,900.0            | 2,100,000.0         | 218.0                |

Turns per inch are based on the normal diameter of S.N.C. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

Double Nylon Covered Wire

|     | Dia. in             |                  | Dian   | neter Over N | Nylon  | Approximate       | Approximate<br>Ohms | Approximate<br>Turns |
|-----|---------------------|------------------|--------|--------------|--------|-------------------|---------------------|----------------------|
| B&S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.   | Normal       | Max.   | Feet<br>Per Pound | Per Pound           | Per Inch             |
| 22  | .0253               | 1.055            | .0276  | . 0288       | . 0300 | 530.0             | 560.0               | 34.7                 |
| 23  | .0226               | 1.322            | . 0250 | . 026        | .0272  | 660.0             | 875.0               | 38.4                 |
| 24  | .0201               | 1.671            | . 0225 | . 0236       | .0247  | 830.0             | 1,390.0             | 42.3                 |
| 25  | .0179               | 2.107            | .0202  | .0213        | . 0225 | 1,040.0           | 2,190.0             | 47.0                 |
| 26  | .0159               | 2.670            | . 0183 | .0194        | .0205  | 1,300.0           | 3,470.0             | 51.5                 |
| 27  | .0142               | 3.348            | .0167  | .0177        | .0187  | 1,640.0           | 5,500.0             | 56.5                 |
| 28  | .0126               | 4.251            | .0151  | . 0161       | .0171  | 2,070.0           | 8,750.0             | 62.0                 |
| 29  | .0113               | 5.286            | .0138  | .0148        | .0158  | 2,530.0           | 13,400.0            | 67.5                 |
| 30  | .010                | 6.75             | .0125  | .0135        | .0145  | 3,190.0           | 21,500.0            | 74.0                 |
| 31  | .0089               | 8.523            | .0114  | .0124        | .0134  | 3,980.0           | 24,200.0            | 80.5                 |
| 32  | .008                | 10.055           | . 0105 | .0115        | .0125  | 4,920.0           | 49,200.0            | 87.0                 |
| 33  | .0071               | 13.39            | . 0096 | . 0106       | .0116  | 6,200.0           | 83,000.0            | 93.4                 |
| 34  | .0063               | 17.00            | . 0088 | . 098        | .0108  | 7,600.0           | 129,000.0           | 102.0                |
| 35  | .0056               | 21.52            | .0081  | .091         | .0101  | 9,250.0           | 199,000.0           | 110.0                |
| 36  | .005                | 27.00            | . 0075 | . 085        | . 0095 | 11,550.0          | 312,000.0           | 117.5                |
| 37  | .0045               | 33.33            | .0070  | .080         | . 0090 | 13,450.0          | 448,000.0           | 125.0                |
| 38  | .004                | 42.19            | . 0065 | .075         | .0085  | 16,000.0          | 657,500.0           | 133.0                |
| 39  | .0035               | 55.10            | . 0060 | .070         | .0080  | 19,100.0          | 1,050,000.0         | 143.0                |
| 40  | .0031               | 70.24            | .0056  | .066         | .0076  | 22,300.0          | 1,560,000.0         | 151.5                |

Turns per inch are based on the normal diameter of D.N.C. wire. To find the approximate number of feet per pound of CUPRON, No. 30, No. 60, No. 90, and No. 180 ALLOY, multiply by .920. For TOPHET A .975 and EVANOHM 1.01.

### Single Glass Covered Wire

|       | Dia. in             |                  | Diameter Over Glass |        |        | Approximate       | Approximate       | Approximate<br>Turns |  |
|-------|---------------------|------------------|---------------------|--------|--------|-------------------|-------------------|----------------------|--|
| B & S | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.                | Normal | Max.   | Feet<br>Per Pound | Ohms<br>Per Pound | Per Inch             |  |
| 22    | .0253               | 1.055            | .0278               | .0283  | .0290  | 523.0             | 552.0             | 35.4                 |  |
| 23    | .0226               | 1.322            | . 0251              | . 0256 | .0263  | 647.0             | 855.0             | 39.1                 |  |
| 24    | .0201               | 1.671            | .0226               | .0231  | .0238  | 810.0             | 1,352.0           | 43.2                 |  |
| 25    | .0179               | 2.107            | .0204               | .0209  | .0216  | 1,012.0           | 2,130.0           | 47.8                 |  |
| 26    | .0159               | 2.670            | .0184               | .0189  | .0196  | 1,270.0           | 3,390.0           | 52.8                 |  |
| 27    | .0142               | 3.348            | . 0167              | .0172  | .0179  | 1,567.0           | 5,250.0           | 58.2                 |  |
| 28    | .0126               | 4.251            | .0151               | .0156  | .0163  | 1,972.0           | 8,380.0           | 64.0                 |  |
| 29    | .0113               | 5.286            | .0138               | .0143  | . 0150 | 2,410.0           | 12,750.0          | 70.0                 |  |
| 30    | .010                | 6.750            | .0125               | .0130  | .0137  | 3,035.0           | 20,400.0          | 77.0                 |  |
| 31    | .0089               | 8.523            | .0114               | .0119  | .0126  | 3,760.0           | 32,000.0          | 84.0                 |  |
| 32    | .008                | 10.55            | .0105               | .0110  | .0117  | 4,565.0           | 48,100.0          | 91.0                 |  |
| 33    | .0071               | 13.39            | .0096               | .0101  | .0108  | 5,670.0           | 76,000.0          | 99.0                 |  |
| 34    | .0063               | 17.00            | .0088               | .0093  | .0100  | 7,025.0           | 119,400.0         | 107.5                |  |
| 35    | .0056               | 21.52            | .0081               | .0086  | .0093  | 8,610.0           | 185,200.0         | 116.0                |  |
| 36    | .005                | 27.00            | .0075               | .0080  | .0087  | 10,520.0          | 284,000.0         | 125.0                |  |
| 37    | .0045               | 33.33            | .0070               | .0075  | . 0082 | 12,680.0          | 422,000.0         | 133.0                |  |
| 38    | .004                | 42.19            | .0065               | .0070  | .0077  | 15,100.0          | 636,000.0         | 143.0                |  |
| 39    | .0035               | 55.10            | .0060               | . 0065 | .0072  | 18,800.0          | 1,037,000.0       | 154.0                |  |
| 40    | .0031               | 70.24            | .0056               | .0061  | .0068  | 23,100.0          | 1,640,000.0       | 164.0                |  |

#### Double Glass Covered Wire

| <b>D.</b> 6. C | Dia. in             | OI.              | Diam  | eter Over Gl | ass    | Approximate<br>Feet | Approximate<br>Ohms | Approximate<br>Turns |
|----------------|---------------------|------------------|-------|--------------|--------|---------------------|---------------------|----------------------|
| B&S            | Inches<br>Bare Wire | Ohms<br>Per Foot | Min.  | Normal       | Max.   | Per Pound           | Per Pound           | Per Inch             |
| 22             | .0253               | 1.055            | .0298 | .0313        | . 0333 | 484.0               | 510.0               | 31.9                 |
| 23             | .0226               | 1.322            | .0271 | .0286        | . 0306 | 597.0               | 788.0               | 35.0                 |
| 24             | .0201               | 1.671            | .0246 | .0261        | .0281  | 743.0               | 1,240.0             | 38.3                 |
| 25             | .0179               | 2.107            | .0224 | .0239        | .0259  | 920.0               | 1,940.0             | 41.8                 |
| 26             | .0159               | 2.670            | .0204 | .0219        | . 0239 | 1,140.0             | 3,040.0             | 45.6                 |
| 27             | .0142               | 3.348            | .0187 | .0202        | . 0222 | 1,395.0             | 4,670.0             | 49.5                 |
| 28             | .0126               | 4.251            | .0171 | .0186        | . 0206 | 1,730.0             | 7,350.0             | 53.7                 |
| 29             | .0113               | 5.286            | .0158 | .0173        | . 0193 | 2,190.0             | 11,580.0            | 57.8                 |
| 30             | .010                | 6.750            | .0145 | .0160        | .018   | 2,590.0             | 17,500.0            | 62.4                 |
| 31             | .0089               | 8.523            | .0134 | .0149        | .0169  | 3,160.0             | 26,900.0            | 67.1                 |
| 32             | .008                | 10.55            | .0125 | .0140        | . 0160 | 3,780.0             | 39,900.0            | 71.4                 |
| 33             | .0071               | 13.39            | .0116 | .0131        | .0151  | <b>4,5</b> 10.0     | 60,300.0            | 76.4                 |
| 34             | .0063               | 17.00            | .0108 | .0123        | .0143  | 5,620.0             | 95,400.0            | 81.3                 |
| 35             | .0056               | 21.52            | .0101 | .0116        | .0136  | 6,750.0             | 145,200.0           | 85.2                 |
| 36             | .005                | 27.00            | .0095 | .011         | .0130  | 8,050.0             | 217,000.0           | 91.0                 |
| 37             | .0045               | 33.33            | . 009 | .0105        | .0125  | 9,570.0             | 319,000.0           | 95.1                 |
| 38             | .004                | 42.19            | .0085 | .010         | .0120  | 11,360.0            | 478,000.0           | 100.0                |
| 39             | .0035               | 55.10            | .008  | .0095        | .0115  | 13,670.0            | 754,000.0           | 105.2                |
| 40             | .0031               | 70.24            | .0075 | .0091        | .0111  | 16,400.0            | 1,189,000.0         | 110.0                |

## ELECTRONIC METALS AND ALLOYS

These metals and alloys are produced for the following applications: cathodes, anodes, grid wire, glass to metal sealing alloys, and metals for leads, welds and supports.

#### Cathode Metals and Alloys

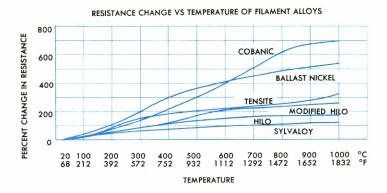
For the directly heated cathodes wire and ribbon are produced. Strip is supplied for the indirectly heated cathodes. The surfaces of wire, ribbon and strip is processed so it will be receptive to a coating of barium and strontium salts.

### Alloys for Directly Heated Cathodes

These are generally referred to as Filament Alloys and the important properties are: good formability, strength at high temperatures, controlled resistance and weights and in some cases the presence of a reducing agent to speed up activation of the cathode. Filament Alloys are made from the purest metals and are melted in an Ajax Northrup Induction Furnace. The melting practice is closely controlled to insure uniformity. We originated what we term the "Melt System". When a new melt of a given alloy is made, a sample is submitted to the customer for his tests. If he approves the melt, it is held exclusively for his use. An accurate record of stock is kept and before the supply from a melt is exhausted, samples of new melts are submitted. This system assures the user of a constant and uniform source of supply and eliminates one important variable in the manufacture of radio and television tubes. Specifications are issued for each melt which assists in duplicating quality. In addition to the established alloys in this group, we are actively making use of the most modern equipment, including vacuum melting, to develop new alloys for this use.

The Filament Alloys are supplied in ribbon form and in ribbon with a channeled groove to add structural strength. Although pure or ballast nickel will serve as excellent cathode materials, cobalt or silicon or aluminum or titanium additions serve to enhance activation of the cathode.

The following tables show the composition and some of the properties of these alloys.


#### COMPOSITION

|                | Composition |      |     |     |      |     |     | Melt<br>Point | Spec. | Resistivity<br>Microhm-Cm |       | Tensile Strength<br>Kg/Cm <sup>2</sup> |       |
|----------------|-------------|------|-----|-----|------|-----|-----|---------------|-------|---------------------------|-------|----------------------------------------|-------|
| Material       | Ni          | Co   | Si  | Mn  | Fe   | Ti  | Al  | °C            | Grav. | 20°C                      | 800°C | 20°C                                   | 850°C |
| Ballast Nickel | 99.70       | 0.08 |     | nil | 0.17 |     |     | 1455          | 8.90  | 8.30                      | 48.0  | 3,960                                  | 740   |
| Sylvaloy       | 97.0        |      | 3.0 | nil |      |     |     | 1420          | 8.61  | 26.5                      | 51.0  | 5,370                                  | 1,115 |
| Hilo           | 75.0        | 18.0 |     | .25 | 5.0  | 2.0 |     | 1450          | 8.56  | 42.0                      | 114.0 | 7,480                                  | 1,840 |
| Modified Hilo  | 78.0        | 20.0 | 1.0 | .25 | 0.5  | 0.3 |     | 1450          | 8.71  | 23.0                      | 78.0  | 5,790                                  | 1,540 |
| Cobanic        | 55.0        | 45.0 |     |     |      |     |     | 1500          | 8.84  | 12.5                      | 81.2  | 6,050                                  | 1,255 |
| Tensite        | 98.0        |      |     |     |      |     | 2.0 | 1425          | 8.76  | 15.0                      | 54.8  | 3,990                                  | 965   |

#### **PROPERTIES**

|                |        |          |                     | Tensile Data |                    |                      |            |                |                  |                         |  |  |
|----------------|--------|----------|---------------------|--------------|--------------------|----------------------|------------|----------------|------------------|-------------------------|--|--|
|                |        |          | Elong.<br>Per       | Co           | ld (Room Te        | mp.)                 | Hot        |                |                  |                         |  |  |
| Material       | Diame  | Diameter |                     | Bkg.         |                    |                      |            | Bkg.           | Tensile Strength |                         |  |  |
|                | Inch   | Cm.      | in<br>3 In.         | Strn.<br>kg. | lb./sq. in.        | kg./cm. <sup>2</sup> | °C.        | Strn.<br>kg.   | lb./sq. in.      | kg./cm.2                |  |  |
| Ballast Nickel | 0.1252 | 0.318    | 38.5<br>39.6        | 315<br>313   | 56,500<br>56,200   | 3,975<br>3,950       | 865<br>865 | 57.2<br>59.3   | 10,270<br>10,620 | 722<br>747              |  |  |
| Sylvaloy       | 0.1253 | 0.318    | 35.5<br>34.1        | 420<br>423   | 75,300<br>75,800   | 5,290<br>5,450       | 875<br>870 | 86.3<br>91.0   | 15,450<br>16,300 | 1,085<br>1,1 <b>4</b> 5 |  |  |
| Hilo           | 0.1262 | 0.320    | $\frac{32.4}{31.2}$ | 601<br>603   | 106,000<br>106,500 | 7,460<br>7,500       | 890<br>880 | 144.0<br>153.0 | 25,840<br>27,050 | 1,790<br>1,900          |  |  |
| Modified Hilo  | 0.1245 | 0.316    | 37.5<br>41.0        | 455<br>452   | 82,800<br>82,100   | 5,810<br>5,770       | 850<br>850 | 119.0<br>122.0 | 21,600<br>22,200 | 1,520<br>1,560          |  |  |
| Cobanic        | 0.1250 | 0.317    | 39.5<br>37.8        | 475<br>478   | 85,700<br>86,400   | 6,030<br>6,070       | 875<br>865 | 98.3<br>99.4   | 17,700<br>17,900 | 1,245<br>1,259          |  |  |
| Tensite        | 0.1266 | 0.321    | 31.2<br>29.0        | 324<br>323   | 57,000<br>56,700   | 4,000<br>3,980       | 850<br>870 | 79.8<br>76.4   | ,                | 985<br>945              |  |  |

The graph shows the resistance change versus temperature in air atmosphere:



Alloys for Indirectly Heated Cathodes

These nickel alloys are supplied in three types: passive, normal and active with the degree of "activity" being controlled by the amount of deoxidizers present.

The melt system is also used in this group of alloys and once a melt has been approved by a customer, it is reserved for his individual use.

In addition to closely controlled analysis limits, these alloys are required in accurate gauge. With three Sendzimir Mills, we can produce crown-free strip accurate to ten-thousandths of an inch.

#### ANODE PLATE MATERIALS

Four types of anode materials are produced: Nickel (Type 330); nickel clad steel; nickel plated steel; and aluminum clad iron.

The first three types of materials are supplied with a carbonized coating which produces high thermal emissivity. This coating is deeply engrained and will withstand all the normal firing operations used in degassification. Special carbonized finishes can be produced to withstand abnormally high firing temperatures. The carbonized finish is supplied in four classes as follows:

*Radiocarb* is the designation given to carbonized nickel from which all the excess carbon has been removed without creating a sheen. The surface has a dull black appearance.

*Duocarb* is carbonized nickel from which all excess carbon has been removed and both surfaces polished.

*Policarb* is carbonized nickel from which the excess carbon has been removed from one side, leaving a dull black surface. The reverse side is polished leaving a shiny black surface.

Britecarb is carbonized nickel with the carbon completely removed from one side.

Aluminum clad iron with a finish designed for anode applications is supplied bright in all standard plate thicknesses and widths. As used for anode parts, this material has high thermal emissivity. In some tube types, this material serves as a "getter".

#### GRID WIRE

Mangrid, an alloy of 4.5 to 5% manganese, balance nickel is supplied as a grid wire. It has a nominal resistivity of 110 ohms per circular mil foot at 20°C (68°F) and is precision drawn to meet milligramic weight limits. The drawing practice on this wire is designed to produce controlled elongation and yield strength. It is also supplied with a silver plated finish to grid wire specifications. This finish minimizes secondary emission and increases the temperature range at which the grid can be used.

The following table lists the sizes, weights and tolerances:

| Diameter<br>in Inches | Weight in mg.<br>per 200 mm. | Weight<br>Tolerance |
|-----------------------|------------------------------|---------------------|
| .0012                 | 1.276                        | $\pm5\%$            |
| .002                  | 3.544                        | $\pm 4\%$           |
| .0025                 | 5.538                        | $\pm 4\%$           |
| .003                  | 8.10                         | $\pm 4\%$           |
| .0033                 | 9.65                         | $\pm 4\%$           |
| .0035                 | 10.85                        | $\pm 4\%$           |
| .004                  | 14.40                        | $\pm 4\%$           |
| .0045                 | 17.96                        | $\pm 4\%$           |
| .005                  | 22.65                        | $\pm 4\%$           |
| .006                  | 32.30                        | $\pm 4\%$           |

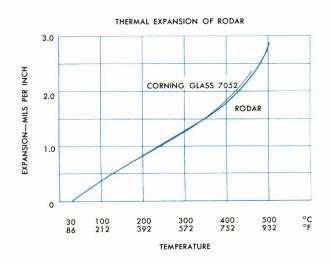
#### NICKEL WIRE

Another important component for radio and television tubes is Grade A nickel wire used for side supports and welds.

Nickel wire is drawn through diamond dies and held to close dimensional tolerances. It is strand annealed in hydrogen type atmospheres at constant speed and closely controlled temperature. This assures a uniform temper throughout and a surface free of foreign substances.

## RODAR®

*Rodar*, an alloy for sealing metal to hard glass, is our response to the demands of the industry for additional materials to meet a specialized requirement. Our engineers and metallurgists assure effective control in the production of this alloy.


*Rodar* produces a permanent vacuum-tight seal with simple oxidation procedure and resists attack by mercury. It is readily machined and fabricated, and can be welded, soldered or brazed.

Rodar can be supplied in all forms of wire, strip and bar to customers' specifications.

#### PROPERTIES OF RODAR

| $\begin{array}{cc} \text{Composition (Nominal)} \\ \text{Nickel} & 29\% \\ \text{Cobalt} & 17\% \end{array}$ | Manganese .30%<br>Iron Balance              |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Melting Point                                                                                                | 1450° C. (Approx.)                          |
| Specific Gravity                                                                                             | 8.36                                        |
| Weight Per Cubic Inch                                                                                        | .302 lb.                                    |
| Electrical Resistivity                                                                                       | 294 Ohms C.M.F.                             |
| Tensile Strength                                                                                             | 80,000 PSI                                  |
| Hardness                                                                                                     | 82 B Rockwell                               |
| Elongation                                                                                                   | 30% (2" gauge length)                       |
| Coefficient of Linear Expansion                                                                              |                                             |
| _                                                                                                            | Average Thermal                             |
| Temperature Range                                                                                            | Expansion, ${\rm *Cm/Cm/^{\circ}Cx10^{-6}}$ |
| 30° To 200 C.                                                                                                | 4.33 To 5.30                                |
| 30 300                                                                                                       | 4.41 	 5.17                                 |
| 30 400                                                                                                       | 4.54 5.08                                   |
| 30 450                                                                                                       | 5.03 5.37                                   |
| 30 500                                                                                                       | 5.71 - 6.21                                 |

NOTE: As determined from cooling curves, after annealing in hydrogen for one hour at 900° C. and for 15 minutes at 1100° C.



## MONEL

Monel is an alloy approximately  $\frac{1}{3}$  Nickel and  $\frac{1}{3}$  Copper. The following chemical analysis is typical:

| Nickel | 67.0% | Manganese | 1.0% |
|--------|-------|-----------|------|
| Copper | 30.0% | Silicon   | .10  |
| Iron   | 1.4   | Carbon    | .15  |

### Physical Properties

| Density grams per cubic centimeter | 8.80        |
|------------------------------------|-------------|
| Pounds per cubic inch              | .318        |
| Thermal expansion (25—100° C)      | .000014     |
| (25—300° C)                        | .000015     |
| Heat conductivity 0—100° C, C.G.S. | .06         |
| Tensile strength psi               | 60 - 80,000 |
| Yield point                        | 30-40,000   |
| Brinell hardness (3000 Kg)         | 125 - 150   |

Monel affords an unusual combination of properties: inherent resistance to corrosion, high tensile strength and toughness. It is particularly adapted for use with the corrosives most frequently encountered: common salt, dilute sulfuric acid, and strong caustic soda. Monel is not resistant to certain corrosives: nitric acid, sulfurous acid, and ferric chloride.

We have many years experience in the manufacture of Monel and are equipped to supply all sizes of wire ¼ inch diameter and finer. The production of wire for the wire cloth industry is one of our specialties. We also supply Monel in strip and ribbon and wire in straightened and cut lengths.

## **NILSTAIN®**

Nilstain is our registered trade name for stainless steel alloys. While there are available today upwards of 60 different compositions of stainless steels, we have concentrated our efforts only on those more popular types, the production of which requires precision and the constant application of technical skill at every step in the manufacturing process.

Stainless quality in steels is derived principally through the addition of chromium, resulting in the formation by this alloy of a protective oxide film which is impervious to further oxidation. Chromium in excess of eleven percent assures a protective oxide film, and additions up to thirty percent result in proportional protection. The addition of nickel to chrome-iron alloys further improves their ability to resist corrosion.

Nickel, when added to chromium, substantially increases resistance to corrosion—the resulting protective film then contains both nickel and chromium, affording far greater protection than the straight chromium oxide.

In chromium-nickel stainless steel alloys the range of nickel is approximately seven to twenty percent and the chromium content in general varies from seventeen to twenty-eight percent. The best example of this type of stainless steel alloy is the popular "18-8", a composition of eighteen percent chromium and eight percent nickel.

Nickel additions in sufficient amounts make these alloys non-magnetic, non-hardening by heat treatment, work-harden rapidly, and unusually ductile in all normal conditions. They possess excellent welding characteristics, and in high temperature applications they retain a high degree of ductility. These properties, combined with that of outstanding corrosion resistance, make chromium-nickel type stainless steel alloys entirely suitable for a wide variety of uses.

Carbon in chromium-nickel steels is a determining factor. Its presence is quite noticeable if the steel is heated within the sensitization range of 1000 to 1600°F. Treated in this manner, it becomes sensitive and no longer resists severe corroding conditions. Sensitization is caused by the precipitation of normally dissolved carbon at the metal grain boundaries in the form of chromium-rich carbides. Such carbides cause a depletion of chromium adjacent to the grain boundaries which may lead to intercrystalline corrosive attack and eventually to physical disintegration.

Chromium-nickel steels improve in corrosion resistance as the carbon content decreases. Since there is a strong affinity between carbon, iron and chromium, these steel alloys always contain some residual carbon originating from raw materials. For many applications carbon contents up to .25 percent are not detrimental. In cases where carbon as a sensitizing agent is pronounced, a stainless steel containing .08 percent carbon or less is necessary, or it is necessary to anneal the material to dissolve the carbon to restore it to maximum corrosion resistance. It may be necessary to apply grades immune to sensitization.

#### NILSTAIN, Continued

Columbium renders chromium-nickel stainless steels immune to sensitization thereby preventing intergranular corrosion. Columbium fixes carbon in the form of columbium carbides uniformly dispersed throughout the steel. It prevents the formation of grain-boundary carbides. Columbium is a stabilizer since it renders the material stable in relation to carbides regardless of thermal treatment. Additions of columbium should amount to at least eight times the carbon content of the steel in order to produce complete immunity. The columbium content usually ranges from .70 to 1.00 percent. Columbium does not materially affect working, fabricating, or physical properties of the steel. Columbium-bearing grades have established themselves as indispensable in a number of applications.

Molybdenum is added to impart improved resistance to corrosive media which attack chrome-nickel stainless steels. This element also imparts increased strength, toughness and resistance to creep-deformation in high temperature service. Additions from 2 to 4 percent have been found necessary to produce the desired results. Molybdenum is particularly beneficial if associated with a low carbon content. These steels possess attractive fabricating and welding properties.

Corrosion resistance of the stainless steels depends on the nature of the numerous factors involved surrounding the corrosive condition of the particular application; therefore, only broad general statements can be made. In acid solutions, the resistance to corrosion depends on the oxidizing capacity of the solution. Austenitic stainless steels are extremely resistant to acids such as nitric, that have a high hydrogen-ion concentration and are strongly oxidizing in character. The presence of oxidizers such as ferric and cupric sulphates in acid solutions permits these alloys to resist dilute acid solutions that show high acidity and relatively low oxidizing power. Hydrochloric acid differs somewhat from the other acids and it is difficult to make the stainless steels passive in this medium. An increase in temperature, particularly when it alters the oxidizing capacity of the acid, will increase the corrosion rate.

Stainless steels, as indicated above, may or may not resist sulphuric acid, depending on the temperature, concentration and oxidizing capacity of the solution. Cold concentrated sulphuric acid will not attack stainless steel, but hot concentrated acid will. Additions of molybdenum such as in Types 316 and 317 greatly improves their resistance to sulphuric acid. This is also true of acetic acid, which will resist up to the boiling point, at which point the steels need the addition of molybdenum. Type 316 is used in great quantities in the paper industry, where the addition of molybdenum greatly improves the resistance to impure sulphurous acids, although in the pure state these acids do not attack stainless steel.

Austenitic stainless steels are particularly effective for the food industry since fruit acids, beer, meat juices, milk and a host of other foods and food products show negligible attack. They are also very satisfactory for handling both weak and strong alkaline solutions at room temperature. They are subject to a pitting type of corrosion from oxidizing acid chloride salts such as dichromates and chromates. Continued

#### NILSTAIN, Continued

exposure to sea water subjects austenitic stainless steels to a pit type of corrosion, although general corrosion is extremely low. This pitting corrosion is effectively decreased through the use of molybdenum containing steels.

#### NILSTAIN SPRING WIRE

In addition to supplying soft and partially cold worked Nilstain for the various weaving and wire forming applications, we also supply Nilstain Spring Wire.

Nilstain Spring Wire is especially processed and controlled to give maximum satisfaction for automatic coiling of springs. Lead coating is supplied as a lubricant to facilitate coiling and is cold processed to meet A.I.S.I. temper requirements.

Nilstain Spring Wire, in addition to being inherently free from corrosion, will operate accurately at temperatures beyond the working limit of steel or bronze. This wire is normally supplied in the Type 302 and Type 304 grades, but can also be supplied in Type 316. The tensile strength of Type 316 will be about 75% of those listed for Types 302 and 304. (See Table).

Nilstain Spring Wire has a modulus of elasticity in tension of 28,000,000 PSI and in torsion of 10,000,000 PSI.

Tensile Strength of Types 302 and 304

| Diameter of Wire,<br>Inch | Tensile Strength<br>Lbs./Square Inch | Diameter of Wire,<br>Inch | Tensile Strength<br>Lbs./Square Inch |
|---------------------------|--------------------------------------|---------------------------|--------------------------------------|
| 0.0181                    | 304,000—334,000                      | 0.072                     | 245,000—275,000                      |
| 0.0204                    | 299,000—329,000                      | 0.080                     | 240,000—270,000                      |
| 0.0230                    | 294,000—324,000                      | 0.0915                    | 234,000—264,000                      |
| 0.0258                    | 288,000—318,000                      | 0.1055                    | 227,000—257,000                      |
| 0.0286                    | 283,000—313,000                      | 0.1205                    | 221,000—251,000                      |
| 0.0317                    | 278,000—308,000                      | 0.135                     | 213,000—243,000                      |
| 0.0348                    | 275,000—305,000                      | 0.1483                    | 207,000—237,000                      |
| 0.041                     | 269,000—299,000                      | 0.162                     | 201,000—231,000                      |
| 0.0475                    | 262,000—292,000                      | 0.177                     | 195,000—225,000                      |
| 0.054                     | 258,000—288,000                      | 0.192                     | 189,000—219,000                      |
| 0.0625                    | 251,000—281,000                      |                           |                                      |

# $\mathbf{NILSTAIN}^{\mathfrak{o}}$

(Stainless Steel)

Typical Properties of Annealed Wire (Average All Sizes up to %")

| Type No.:                                                | 302                 | 304       | 305       | 308       | 309       | 310       | 316       | 317       | 347              | 430      |
|----------------------------------------------------------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------------|----------|
| Chemical Analysis: Perc                                  | ent                 |           |           |           |           |           |           |           |                  |          |
| Chromium                                                 | 17—19               | 18—20     | 17—19     | 19—21     | 22—24     | 2426      | 16—18     | 18—20     | 17—19            | 14—18    |
| Nickel                                                   | 8—10                | 8—11      | 10—13     | 10—12     | 12—15     | 19—22     | 10—14     | 11—14     | 9—12             | .50 max  |
| Carbon                                                   | .0820               | .08 max.  | .12 max.  | .08 max.  | .20 max.  | .25 max.  | .10 max.  | .10 max.  | .08 max.         | .35 max  |
| Manganese                                                | 2.00 max.           | 2.00 max. | 2.00 max. | 2.00 max. | 2.00 max. | 2.00 max. | 2.00 max. | 2.00 max. | 2.00 max.        | 1.50 max |
| Silicon                                                  | 1.00 max.           | 1.00 max. | 1.00 max. | 1.00 max. | 1.00 max. | 1.50 max. | 1.00 max. | 1.00 max. | 1.00 max.        | 1.00 max |
| Molybdenum                                               |                     |           |           |           |           |           | 2.00-3.00 | 3.00-4.00 |                  |          |
| Other Elements                                           |                     |           |           |           |           |           |           |           | Cb 10x<br>C min. |          |
| Physical Properties                                      |                     |           |           |           |           | 1         |           |           |                  |          |
| Density—lbs./cu. in.                                     | . 29                | . 29      | . 29      | . 29      | . 29      | . 29      | . 29      | . 29      | . 29             | .28      |
| Specific Heat—Btu/°F./<br>(32°—212°F.)                   | / <b>lb.</b><br>.12 | .12       | .12       | .12       | .12       | .12       | .12       | .12       | .12              | .11      |
| Thermal Conductivity—                                    | -Btu/ft²/hr         | ./°Fft.   |           |           |           |           |           |           |                  |          |
| 212°F.                                                   | 9.4                 | 9.4       | 9.4       | 8.8       | 9.0       | 8.0       | 9.4       | 9.4       | 9.3              |          |
| 932°F.                                                   | 12.4                | 12.4      | 12.4      | 12.5      | 10.8      | 10.8      | 12.4      | 12.4      | 12.8             |          |
| Mean Coefficient of Th<br>in./in./°F. x 10 <sup>-6</sup> | ermal Expa          | nsion     |           |           | -         |           | -         |           |                  |          |
| 68°—212°F.                                               | 8.0                 | 8.0       | 8.0       | 9.0       | 8.0       | 8.0       | 8.8       | 8.8       | 8.3              | 5.7      |
| 68°—indicated temp.                                      | 10.6                | 10.6      | 10.6      | 10.6      | 10.9      | 10.9      | 10.6      | 10.6      | 10.6             |          |
| •                                                        | (1700°)             | (1700°)   | (1700°)   | (1700°)   | (2100°)   | (2100°)   | (1700°)   | (1700°)   | (1700°)          |          |
| Mechanical Properties                                    |                     |           |           |           | -         |           |           |           |                  | ,        |
| Yield Strength—psi                                       | 50,000              | 50,000    | 35,000    | 50,000    | 45,000    | 45,000    | 40,000    | 40,000    | 40,000           | 50,000   |
| Heid Strength—psi                                        | 0.,                 |           |           |           |           |           |           | 1         | 1                |          |

# TYPE 304 NILSTAIN®

Pounds Per Foot and Feet Per Pound of Wire Density .287 Lbs. Per Cubic Inch

| Diameter<br>Inches | Pounds<br>Per Foot | Feet<br>Per Pound | Diameter<br>Inches | Pounds<br>Per Foot | Feet<br>Per Pound |
|--------------------|--------------------|-------------------|--------------------|--------------------|-------------------|
| .002               | .0000108           | 92,593            | .058               | . 009099           | 110               |
| .002               | .0000103           | 41,152            | .059               | .009415            | 106               |
| .003               | .0000243           | 23,256            | .060               | .009737            | 103               |
| .004               | .000043            | 14,706            | .061               | .010064            | 99                |
| .006               | .000097            | 10,309            | .062               | .010397            | 96                |
| .007               | .000133            | 7,519             | .063               | .010735            | 93                |
| .008               | .000173            | 5,780             | .064               | .011079            | 90                |
| .009               | .000219            | 4,566             | .065               | .011428            | 88                |
| .010               | .000270            | 3,703             | .066               | .011782            | 85                |
| .011               | .000327            | 3,058             | .067               | .012142            | 82                |
| .012               | .000389            | 2,570             | .068               | .012507            | 80                |
| .013               | .000457            | 2,188             | .069               | .012878            | 78                |
| .014               | .000530            | 1,888             | .070               | .013254            | 75                |
| .015               | .000608            | 1,644             | .071               | .013635            | 73                |
| .016               | .000692            | 1,445             | .072               | .014022            | 71                |
| .017               | .000781            | 1,280             | .073               | .014414            | 69                |
| .018               | .000876            | 1,141             | .074               | .014812            | 68                |
| .019               | .000976            | 1,024             | .075               | .015215            | 65.7              |
| .020               | .001081            | 925               | .076               | .015623            | 64.0              |
| .021               | .001192            | 839               | .077               | .016037            | 62.3              |
| .022               | .001309            | 764               | .078               | .016456            | 60.7              |
| .023               | .001430            | 699               | .079               | .016881            | 59.2              |
| .024               | .001558            | 642               | .080               | .017311            | 57.7              |
| .025               | .001690            | 592               | .081               | .017746            | 56.3              |
| .026               | .001828            | 547               | .082               | .018187            | 54.9              |
| .027               | .001971            | 507               | .083               | .018634            | 53.6              |
| .028               | .002120            | 472               | .084               | .019085            | 52.3              |
| .029               | .002120            | 440               | .085               | .019543            | 51.1              |
| .030               | .002434            | 411               | .086               | .020005            | 49.9              |
| .031               | .002599            | 385               | .087               | .020473            | 48.8              |
| .032               | .002769            | 361               | .088               | . 020946           | 47.7              |
| .033               | .002945            | 340               | .089               | .021425            | 46.6              |
| .034               | .003126            | 320               | .090               | .021909            | 45.6              |
| .035               | .003313            | 302               | .091               | . 022399           | 44.6              |
| .036               | .003505            | 285               | .092               | .022894            | 43.6              |
| .037               | .003703            | 270               | .093               | .023394            | 42.7              |
| .038               | .003905            | 256               | .094               | . 023900           | 41.8              |
| .039               | .004114            | 243               | .095               | .024411            | 40.9              |
| .040               | .004327            | 231               | .096               | .024928            | 40.1              |
| .041               | .004546            | 220               | .097               | . 025450           | 39.2              |
| .042               | .004771            | 210               | .098               | .025978            | 38.4              |
| .043               | . 005001           | 200               | .099               | .026510            | 37.7              |
| .044               | .005236            | 191               | .100               | .027049            | 36.9              |
| .045               | .005477            | 183               | .104               | . 029256           | 34.1              |
| .046               | .005723            | 175               | .109               | .031866            | 31.3              |
| .047               | .005975            | 167               | .125               | .042264            | 23.6              |
| .048               | .006232            | 160               | .140               | .053016            | 18.8              |
| .049               | .006494            | 154               | .156               | .065826            | 15.1              |
| .050               | .006762            | 148               | .171               | .079094            | 12.643            |
| .051               | . 007035           | 142               | .187               | . 094588           | 10.572            |
| .052               | .007314            | 137               | .203               | .111466            | 8.971             |
| .053               | .007598            | 132               | .218               | .128548            | 7.779             |
| .054               | 007887             | 127               | .234               | .148110            | 6.752             |
| .055               | .008182            | 122               | .250               | . 169057           | 5.915             |
| .056               | .008482            | 118               |                    |                    |                   |
| .057               | .008788            | 114               |                    |                    | 1                 |

NOTE: These figures are very close for all the Type 300 grades of Nilstain. Type 430 Nilstain will be approximately 2% more feet per pound.

#### \*NILSTAIN C-20°

A Sulphuric Acid Resisting Stainless Steel

We are pleased to present a new addition to our evergrowing list of alloys, Nilstain C-20. It is obtainable in all wire and flat wire sizes as well as ribbon and offers many opportunities for economy and safety in all phases of the chemical industry.

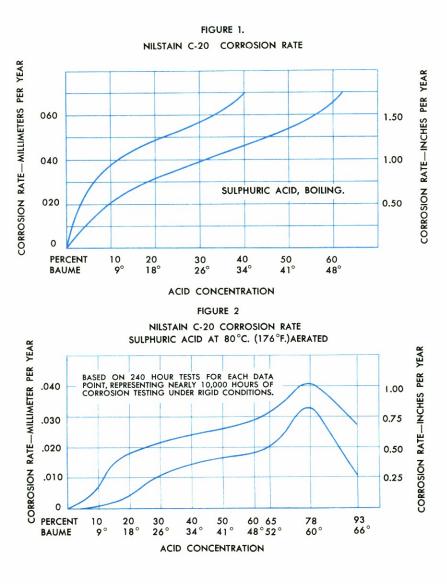
A typical analysis of the alloy:

| Carbon     | 0.07% | max. |
|------------|-------|------|
| Manganese  | 0.75  |      |
| Silicon    | 1.00  |      |
| Chromium   | 20.00 |      |
| Nickel     | 29.00 |      |
| Molybdenum | 2.00  | min. |
| Copper     | 3.00  | min. |

Nilstain C-20 in addition to its excellent resistance to a broad list of corrosive agents, has essentially all the good mechanical properties of the 18-8 stainless alloys and can be fabricated with comparative ease. Maximum corrosion resistance is obtained by water quenching from 2100° F. Nilstain C-20 is subject to carbide precipitation when heated or slow cooled through the sensitizing range of 900 to 1600°F. and such treatment should be avoided.

Some of the widespread applications where Nilstain C-20 will find extensive usage are in the manufacture of synthetic rubber, high octane gasoline, solvents, explosives, plastics, synthetic fibres, heavy chemicals, organic chemicals and food processing. Typical uses include wire cloth, screws, nuts, rivets, bolts, springs, wire forms as well as mixing tanks and heat exchangers.

One of the outstanding features of Nilstain C-20 is its good resistance to hot sulphuric acid; this permits its use in 60° Be. (78%) sulphuric acid solutions at temperatures of about 50° C (125°F.). It is also satisfactory in 65 and 93% sulphuric acid solutions.


The corrosion resistance (IPY) of Nilstain C-20 to various concentrations of sulphuric acid at 80°C. (176°F.) and at boiling temperatures is shown in Fig. 1 and Fig. 2. Broad "band" curves are used to illustrate the variations in laboratory corrosion testing even though tests are made under identical conditions, as a variety of line curves can be drawn through any set of plotted data with many interpretations of each curve.

The advantage of using Nilstain C-20 to resist the corrosive effects of sulphuric acid at temperatures at 80°C. (176°F.) is graphically demonstrated by Fig. 2. The danger zone, indicated by the "hump", is in the range of 65 to 93% sulphuric acid at 80°C. (176°F.). In this range, the conventional 18-8 Cr-Ni-Mo austenitic steels (Types 316 and 317) show corrosion rates many times greater than illustrated. While Nilstain C-20 shows accelerated corrosion, it is far superior to the 18-8 grades and is deemed satisfactory for most of this concentration range.

#### NILSTAIN C-20, Continued

Many factors influence the resistance of Nilstain C-20 in service. The factors which must be given consideration in corrosion service are temperature, concentration, aeration, influence of inhibiting or accelerating contaminants, influence of recirculation, solids in suspension, velocity, continuity or frequency of use and equipment design.

Inhibitors are usually oxidizing agents, such as ferric sulphate, nitric acid, or copper sulphate. When present, in even small amounts may reduce the corrosion rate to as low as .01% of the rate when such inhibitant is not present. Nilstain C-20 is especially resistant to nitric-sulphuric acid mixtures. On the other hand such contaminants as ferric chloride may greatly accelerate the corrosion rate. Certain halides and hydrochloric acid when present in sulphuric acid will accelerate the corrosion rate also.



#### NILSTAIN C-20, Continued

#### Physical Constants

| Physical Consta  | nts                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Density:         | lbs. per cu. in       0.289         grams per cu. cm.       8                                                                                   |
| Specific Heat:   | Btu. per lb. per °F. (32-212°F.)       .12         Gram-calories per gram per °C. (0-100°C.)       .12                                          |
| Specific Electri | cal Resistance at Room Temperature:                                                                                                             |
|                  | Ohms per cir. mil. ft.451Microhms per centimeter cube75                                                                                         |
| Coefficient of T | Thermal Expansion:                                                                                                                              |
|                  | Mean between $68^{\circ}F$ . and $1200^{\circ}F$ . $9.4 \times 10^{-6}$ Mean between $20^{\circ}C$ . and $650^{\circ}C$ . $16.9 \times 10^{-6}$ |
| Nominal Mech     | anical Properties                                                                                                                               |
| 1" Round bar-    | -annealed 1950°F. and water quenched:                                                                                                           |
|                  | Yield strength, .2% Offset p.s.i                                                                                                                |
|                  | (kg. per sq. cm. 2,460) Tensile strength, lbs. per sq. in                                                                                       |
|                  | Elongation in 2" (5.08 cm.) $50\%$ Reduction of area $65\%$ Brinell hardness $160$                                                              |
|                  | Rockwell hardness                                                                                                                               |

#### Mechanical Properties of Cold Drawn Nilstain C-20

Nilstain C-20 can be supplied cold drawn in coils to tensile properties as shown in this table. When ordered in straightened and cut lengths, the tensile strength will be about 10% less than the values shown here. We can furnish cold drawn high tensile wire in round sizes starting from .125 to .010" inclusive. Such material may be used for the manufacture of springs, and for similar applications where high strength is required.

| Wire Diameter | Tensile Strength       |         |  |
|---------------|------------------------|---------|--|
| Inch          | Pounds Per Square Inch |         |  |
|               | Min.                   | Max.    |  |
| .050          | 196,000                | 216,000 |  |
| .0625         | 192,000                | 212,000 |  |
| .125          | 182,000                | 202,000 |  |

When Nilstain C-20 is cold drawn in larger sizes, the mechanical properties are similar to those of Type 302.

<sup>\*</sup>Carpenter Patent No. 2,553,330.

Durimet 20 Analysis licensed by the Duriron Company, Inc.

### BERALOY®

Beraloy is our trade name for beryllium copper alloys supplied in two grades: Beraloy A and Beraloy D, which differ in beryllium content. Their nominal analysis is as follows:

1. BERALOY A — 1.80—2.05% beryllium

2. BERALOY D — 1.60—1.80% beryllium

Available in Strip, Round Wire and Flat Wire.

Beraloy A is manufactured in accordance with A.S.T.M. Specifications B-194-51T and B-197-51T, and because of its outstanding properties Beraloy A is widely used in diaphragms and springs where exceptional properties are obtained in its high electrical conductivity, high resistance to fatigue, and very low hysteresis or drift. The ease with which Beraloy A is formed in the annealed condition makes it ideal for use in lightweight and intricate parts. These parts are then heat-treated to obtain high strength and rigidity. Its corrosion resistance and particularly its fatigue resistance under corrosive conditions influence its selection for important uses. High mechanical properties can be obtained by using material cold rolled after the solution anneal. However, cold worked material may not lend itself to fabricating certain parts as readily as solution annealed material.

Beraloy D is a modification of the standard Beraloy A and can be handled in the same manner. It has an advantage of lower cost where the top mechanical properties of the standard alloy are not required.

On the following page, we list typical mechanical properties of *Beraloy* strip and flat wire and also typical mechanical properties of *Beraloy* wire.

# TYPICAL MECHANICAL PROPERTIES OF BERALOY STRIP AND FLAT WIRE

|           |                                          | Heat                                                   | Tensile                                               | Rockwell                           | Hardness                             |
|-----------|------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------|--------------------------------------|
| Alloy     | Temper                                   | Treatment                                              | Strength PSI                                          | B Scale                            | 30T Scale                            |
| Beraloy A | Solution<br>Annealed                     | None                                                   | 60,000 78,000                                         | 45—78                              | 46—67                                |
|           | 1/4 Hard                                 | None                                                   | 75,000— 88,000                                        | 68—90                              | 62—75                                |
|           | ½ Hard                                   | None                                                   | 85,000—100,000                                        | 88—96                              | 74—79                                |
|           | * Hard                                   | None                                                   | 100,000—120,000                                       | 96—102                             | 78—83                                |
|           | Solution<br>Annealed<br>¼ Hard<br>½ Hard | 3 hrs. @ 600°F.<br>2½ hrs. @ 600°F.<br>2 hrs. @ 600°F. | 160,000—190,000<br>170,000—200,000<br>180,000—210,000 | C-Scale<br>34—40<br>36—42<br>38—44 | 30N Scale<br>55—61<br>57—63<br>59—65 |
|           | Hard                                     | 2 hrs. @ 600°F.                                        | 185,000—215,000                                       | 39—45                              | 60—66                                |

#### TYPICAL MECHANICAL PROPERTIES OF BERALOY WIRE

| Alloy     | Temper               | Heat<br>Treatment | Tensile<br>Strength-PSI |
|-----------|----------------------|-------------------|-------------------------|
| Beraloy A | Solution<br>Annealed |                   | 58,000— 78,000          |
|           | 1/4 Hard             |                   | 90,000—115,000          |
|           | 1/2 Hard             |                   | 110,000—135,000         |
|           | ¾ Hard               |                   | 130,000—155,000         |
|           | Solution<br>Annealed | 3 hrs. @ 600°F.   | 160,000—190,000         |
|           | 1/4 Hard             | 2 hrs. @ 600°F.   | 175,000—205,000         |
|           | 1/2 Hard             | 1½ hrs. @ 600°F.  | 185,000—215,000         |
|           | 34 Hard              | 1 hr. @ 600°F.    | 190,000—230,000         |

Beraloy D will have the same properties as  $Beraloy\ A$  in the various as-rolled and drawn temper categories; however, heat treated properties are lower; tensile strength is approximately 10% less.

Beraloy, heat treated, has an electrical conductivity of 25 to 30% I.A.C.S.

# **BERALOY**®

#### Weight of Wire

Density .2965 lbs./Cubic Inch

| Brown & Sharpe | Decimal    | Pounds     | Feet      |
|----------------|------------|------------|-----------|
| Gauge No.      | Equivalent | Per M Foot | Per Pound |
| 000            | . 410      | 469.2      | 2.130     |
| 00             | . 365      | 372.0      | 2.688     |
| 0              | .325       | 294.3      | 3.392     |
| 1              | . 289      | 234.0      | 4.275     |
| 2              | . 258      | 185.6      | 5.387     |
| 3              | . 229      | 146.7      | 6.832     |
| 4              | . 204      | 116.7      | 8.609     |
| 5              | . 182      | 92.55      | 10.79     |
| 6              | .162       | 73.40      | 13.60     |
| 7              | .144       | 58.20      | 17.21     |
| 8              | .128       | 46:20      | 21.65     |
| 9              | .114       | 36.61      | 27.35     |
| 10             | . 102      | 29.03      | 34.41     |
| 11             | .091       | 23.02      | 43.45     |
| 12             | .081       | 18.28      | 54.60     |
| 13             | .072       | 14.51      | 68.89     |
| 14             | .064       | 11.51      | 87.40     |
| 15             | .057       | 9.092      | 109.6     |
| 16             | .051       | 7.261      | 137.1     |
| 17             | .045       | 5.726      | 174.5     |
| 18             | .040       | 4.541      | 221.0     |
| 19             | .036       | 3.601      | 277.5     |
| 20             | .032       | 2.856      | 350.9     |
| 21             | .0285      | 2.268      | 440.9     |
| 22             | . 0253     | 1.801      | 555.2     |
| 23             | . 0226     | 1.427      | 699.8     |
| 24             | .0201      | 1.131      | 884.5     |
| 25             | .0179      | . 8960     | 1,115.0   |
| 26             | .0159      | .7108      | 1,408.0   |
| 27             | .0142      | . 5635     | 1,775.0   |
| 28             | .0126      | . 4470     | 2,240.0   |
| 29             | .0113      | . 3543     | 2,807.0   |
| 30             | .010       | .2811      | 3,560.0   |
| 31             | .0089      | . 2212     | 4,525.0   |
| 32             | .008       | . 1791     | 5,585.0   |
| 33             | .0071      | .1410      | 7,093.0   |
| 34             | .0063      | .1111      | 9,010.0   |
| 35             | .0056      | . 08753    | 11,410.0  |
| 36             | .005       | . 06981    | 14,320.0  |
| 37             | . 0045     | .05652     | 17,690.0  |
| 38             | .004       | . 04466    | 22,190.0  |
| 39             | . 0035     | . 03421    | 29,200.0  |
| 40             | .0031      | . 02686    | 37,210.0  |

# **BERALOY**\*

Weight of Beraloy Strip
Pounds per lineal foot

| Thickness     | B & S    |                                         |                | S     | TRIP WIDTI | 1              |       |       |
|---------------|----------|-----------------------------------------|----------------|-------|------------|----------------|-------|-------|
| Inches        | Gauge    | 1/8″                                    | 1/4"           | 1/2"  | 1"         | 2"             | 3"    | 4"    |
| .0508         | 16       | .023                                    | .046           | .091  | .183       | .366           | .549  | .732  |
| .0453         | 17       | .023                                    | .040           | .082  | .163       | .326           | . 489 | .652  |
| .0453         | 18       | .020                                    | .036           | .082  | .105       | . 290          | .435  | .580  |
| .0359         | 19       | .018                                    | .030           | .075  | .149       | . 258          | .388  | .517  |
| .0339         | 20       | .016                                    | .032           | .058  | .115       | . 230          | .346  | . 461 |
|               |          |                                         |                |       |            |                | +     | -     |
| .0285         | 21       | .013                                    | .026           | . 051 | . 103      | . 205          | . 308 | . 410 |
| .0254         | 22       | .011                                    | .023           | .046  | .091       | . 183          | . 274 | . 366 |
| .0226         | 23       | .010                                    | . 020          | .041  | .081       | . 163          | . 244 | . 325 |
| .0201         | 24       | .009                                    | .018           | . 036 | .072       | .144           | . 217 | . 289 |
| .0179         | 25       | .008                                    | .016           | . 032 | . 064      | .129           | . 193 | . 258 |
| .0159         | 26       | .007                                    | .014           | .029  | .057       | .114           | .172  | .229  |
| .015          | 20       | .007                                    | .014           | .027  | .054       | .108           | .162  | .216  |
| .0142         | 27       | .006                                    | .012           | .026  | .051       | .102           | .153  | .204  |
| .0126         | 28       | .006                                    | .012           | .023  | .045       | .091           | .136  | .181  |
| .0120         | 20       | .005                                    | .011           | .023  | .043       | .086           | .130  | .173  |
|               |          |                                         |                |       |            |                |       |       |
| .0113         | 29       | . 005                                   | .010           | . 020 | .041       | .081           | . 122 | . 163 |
| .010          | 30       | . 005                                   | . 009          | .018  | .036       | .072           | . 108 | .144  |
| .0089         | 31       | .004                                    | .008           | .016  | .032       | . 064          | . 096 | .128  |
| .008          | 32       | .004                                    | .007           | .014  | .029       | .058           | .086  | .115  |
| .0075         |          | . 003                                   | .007           | .014  | .027       | . 054          | . 081 | .108  |
| .0071         | 33       | .003                                    | .006           | .013  | .026       | .051           | .077  | .102  |
| .0063         | 34       | . 003                                   | .006           | .013  | .023       | .045           | .068  | .091  |
| .0063         | 34       |                                         |                |       | .023       |                |       | .086  |
|               | 25       | . 003                                   | .005           | .011  |            | .043           | .065  |       |
| .0056<br>.005 | 35<br>36 | . 003<br>. 002                          | . 005<br>. 005 | .010  | .020       | . 040<br>. 036 | .060  | .081  |
| .003          | 30       | .002                                    | .000           | .009  | .010       | .000           | .004  | .012  |
| .0045         | 37       | .002                                    | .004           | . 008 | .016       | . 032          | .049  | .065  |
| .004          | 38       | . 002                                   | .004           | . 007 | .014       | . 029          | . 043 | . 058 |
| .0035         | 39       | .002                                    | . 003          | . 006 | .013       | . 025          | . 038 | . 050 |
| .0031         | 40       | .001                                    | .003           | . 006 | .011       | .022           | . 033 | . 045 |
| .003          |          | . 001                                   | . 003          | . 005 | .011       | . 022          | . 032 | . 043 |
| .0028         | 41       | .001                                    | .003           | . 005 | .010       | .020           | .030  | .040  |
| .0025         | 42       | .001                                    | .002           | . 005 | .009       | .018           | .027  | .036  |
| .0022         | 43       | .001                                    | .002           | .004  | .008       | .016           | .024  | .032  |
| .002          | 44       | .001                                    | .002           | .004  | .007       | .014           | .022  | .029  |
| .0018         | 45       | .001                                    | .002           | . 003 | .006       | .013           | .019  | .026  |
| .0016         | 46       | .001                                    | .001           | .003  | .006       | .012           | .017  | 000   |
| .0016         | 46       | .001                                    | .001           | .003  | .006       | .012           | .017  | . 023 |
| .0014         | 48       | .001                                    | .001           | .003  | .005       | .010           | .015  |       |
|               | 48       | 100000000000000000000000000000000000000 |                |       |            |                |       | .017  |
| .0011         | 49<br>50 | .001                                    | .001           | .002  | .004       | .008           | .012  | .016  |
| .001          | อบ       | .001                                    | .001           | .002  | .004       | .007           | .011  | .014  |

### **COBENIUM**®

Cobenium is a heat treatable, high cobalt alloy. It was developed after years of research for an alloy that would have as good or better properties than watch mainspring steel, and in addition be highly corrosion resistant, the main cause of mainspring failures.

While it was primarily developed as a spring material, its unusual corrosion resistance and non-magnetic properties coupled with extremely high strength at normal and elevated temperatures, make it a general purpose rather than a specialized alloy. It is completely corrosion resistant to atmospheric conditions, including extremely high humidity, and tests have proven it to be more resistant to corrosives than stainless steels (see comparative corrosion table). It is completely non-magnetic and cannot be magnetized. No residual magnetism was detected with a 71 Gauss search coil, after a sample was subjected to a 2000 Gauss magnetic field.

Cobenium, generally speaking, has no notch sensitivity and as a spring material has proven to have considerably higher resistance to set and fatigue than mainspring steel. It will, at elevated temperatures, retain its elastic properties to a much greater degree and to somewhat higher temperatures than 18/8 stainless steel.

Cobenium is a heat treatable alloy readily formed and blanked in the cold worked condition; responding to a simple thermal treatment. The hardening temperatures range from 900° to 1100°F, with time at temperature varying with the temperature employed. In general, it has been found that five hours at 1050°F, has been most satisfactory for fully cold worked material for most applications. Where precise tolerances are to be held on intricate parts, it is advisable to fixture heat treat. The thermal treatment will cause a slight warpage or distortion.

The nature of the alloy is such that it will not respond to heat treatment from the solution annealed state. It must have some degree of cold work in order to be hardened to higher values than the already high cold worked properties. Naturally a greater amount of cold work within its workable limits, will produce a correspondingly greater response. For maximum mechanical and spring properties it has been found that a cold reduction in area of 85% for strip, particularly in the thinner gauges, has been most satisfactory. Wire with a cold reduction in area of 48% has proven best. Cobenium, unless otherwise specified for a particular application, will be supplied automatically in these tempers, for optimum properties in wire and strip.

### TYPICAL PROPERTIES OF COBENIUM®

#### A. CHEMICAL COMPOSITION:

| Cobalt     | 40% | Manganese | 2%   |
|------------|-----|-----------|------|
| Chromium   | 20% | Beryllium | .04% |
| Nickel     | 15% | Carbon    | .15% |
| Molybdenum | 7%  | Iron      | Bal. |

#### B. MECHANICAL PROPERTIES AS HEAT TREATED:

| Ultimate Strength       | 360,000 psi.    |
|-------------------------|-----------------|
| Yield Strength          | 280,000 psi.    |
| Proportional Limit      | 233,000 psi.    |
| Modulus of Elasticity   | 29,500,000 psi. |
| Shear Modulus (Torsion) | 11,000,000 psi. |
| Rockwell Hardness       | C-55-60         |

#### C. PHYSICAL PROPERTIES:

| Density                         | .300 Lbs./Cu. In.                                                         |
|---------------------------------|---------------------------------------------------------------------------|
| Specific Gravity                | 8.3                                                                       |
| Coefficient of Linear Expansion | $12.7 \times 10^{-6} \text{Per } ^{\circ}\text{C} (0-50^{\circ}\text{C})$ |
| Thermoelasticity                | -39.6 x 10-5Per °C (0-50°C)                                               |

#### D. CORROSION PROPERTIES:

| Dion intermet                        |                                                         |         |
|--------------------------------------|---------------------------------------------------------|---------|
| Salt Spray Test  Acids and Salts     | —No Evidence of<br>After 500 Hours<br>—See Listing Belo | 3       |
| Acids and baits                      | bee Listing Der                                         | , vv    |
| Galvanic Action<br>(In 10% Sulphuric | ${f Metal}$                                             | Voltage |
| Acid Electrolyte)                    | Silver                                                  | -0.29   |
| ,                                    | Cobenium                                                | 0.27    |
|                                      | Copper                                                  | -0.20   |
|                                      | Brass                                                   | -0.13   |
|                                      | Lead                                                    | 0.00    |
|                                      | Steel (1%C)                                             | +0.30   |
|                                      | Zine                                                    | +0.71   |
|                                      |                                                         |         |

The following table summarizes the results of laboratory tests of the chemical resistance of Cobenium. The tests consisted of refluxing the metal specimen totally immersed in the chemical solution for approximately 50 hours. Duplicate tests showed good agreement of the corrosion rate.

| Chemical          | Temp. °F. | Cobenium | Loss in Mg./Sq. In./Hr.<br>18-8 Mo. | 17% Chrome |
|-------------------|-----------|----------|-------------------------------------|------------|
| Acetic acid       |           |          |                                     |            |
| Glacial           | 246       | 0.000    | 0.014 (1)                           | 2.53       |
| 50%               | 223       | 0.000    | 0.018 (1)                           | 0.013(1)   |
| 10%               | 218       | 0.000    | 0.015 (1)                           | 0.018(1)   |
| Ammonium Chloride |           |          |                                     |            |
| 50%               | 235       | 0.000    |                                     | _          |
| 10%               | 220       | 0.000    | 0.005                               | 0.020      |
| Ammonium Sulfate  |           |          |                                     |            |
| 10%               | 220       | 0.000    | _                                   | _          |
| Calcium Chloride  |           |          |                                     |            |
| 10%               | 218       | 0.000    | 0.02 (1)                            | 0.004      |
| Chromic Acid      |           |          |                                     |            |
| 10%               | 224       | 1.17     | _                                   | _          |
| Citric Acid       |           |          |                                     |            |
| 10%               | 222       | 0.000    | 0.023(1)                            | 0.007      |

#### PROPERTIES OF COBENIUM, Continued

| Chemical                  | Temp. °F. | Cobenium    | Loss in Mg./Sq. In./Hr<br>18-8 Mo. | 17% Chrome |
|---------------------------|-----------|-------------|------------------------------------|------------|
| Cupric Chloride           |           |             |                                    |            |
| 10%                       | 215       | 0.86        | 33.6 (2)                           | 78.7 (2)   |
| Ferric Chloride           |           |             |                                    |            |
| 10%                       | 216       | 27.55 (3)   | 109.43 (3)                         | 202.90 (3) |
| 10%                       | 75        | 0.00000 (4) | 0.00004 (4)                        | 0.00018(4) |
| Hydrochloric Acid         |           |             |                                    |            |
| Concentrated              | 230       | 29.4        | 639.23                             | 4166.0     |
| 50% solution              | 230       | 34.2        | 679.46                             | 3355.0     |
| 10% solution              | 216       | 44.7        | 38.09                              | 588.0      |
| Lactic Acid               |           |             |                                    |            |
| 10%                       | 219       | 0.000       | 0.002                              | 0.005      |
| Mercuric Chloride         |           |             |                                    |            |
| 10%                       | 214       | 0.003       | 30.9 (2)                           | 198        |
|                           | 211       | 0.000       | 0010 (2)                           |            |
| Nitric Acid               | 254       | 0.37        | 0.193                              | 1.15       |
| Concentrated 50% solution | 240       | 0.09        | 0.06                               | 0.28       |
| 10% solution              | 224       | 0.007       | 0.005                              | 0.05       |
|                           | 221       | 0.001       |                                    |            |
| Oxalic Acid               | 216       | 0.067       | 0.876                              | 4.422      |
| 10%                       | 210       | 0.007       | 0.870                              | 1.122      |
| $Phenol\ 10\%$            | 219       | 0.000       | 0.000                              | 0.000      |
| Phosphoric Acid           |           |             |                                    |            |
| Concentrated              | 330       | 20.40       | 8.86                               | 639.40     |
| 50% solution              | 242       | 0.30        | 3.43                               | 0.18       |
| 10% solution              | 225       | 0.00        | 0.16                               | 0.02       |
| Sodium Chloride           |           |             |                                    |            |
| 10%                       | 218       | 0.000       | 0.000                              | 0.000      |
|                           | 210       | 0.000       | 0.000                              | 0.000      |
| Sodium Cyanide            | 010       | 0.000       | 0.000                              | 0.000      |
| 10%                       | 218       | 0.000       | 0.000                              | 0.000      |
| Sodium Sulfide            | 122       |             | 0.000                              | 0.000      |
| 10%                       | 220       | 0.000       | 0.000                              | 0.000      |
| Sodium Sulfite            |           |             |                                    |            |
| 10%                       | 220       | 0.000       | 0.0005                             | 0.0008     |
| Stannous Chloride         |           |             |                                    |            |
| 10%                       | 216       | 0.000       | 0.009                              | +0.342(5)  |
| Sulfuric Acid             |           |             |                                    |            |
| Concentrated              | 498       | 1.75        | 4.61                               | 5.62       |
| 50%                       | 302       | 637.86      | <b>2</b> 990.                      | 334.96     |
| 10%                       | 221       | 1.85        | 48.3                               | 2598.49    |
| Tartaric Acid             |           |             |                                    |            |
| 10%                       | 219       | 0.000       | 0.018 (1)                          | 0.007      |
| Zinc Chloride             |           |             |                                    |            |
| 10%                       | 217       | 0.000       | 0.003 (1)                          | 0.003 (1)  |
| /0                        |           |             | 200 1000100 0000                   |            |

#### Notes

- (1) All the loss occurred during the first 8 hour period.
- (2) On account of contamination of reduced metals and difficulty of cleaning these losses are probably greater than the values reported.
- (3) These tests run about 10 hours; others approximately 50 hours.
- (4) These tests run for 72 days at room temperature.
- (5) This specimen gained weight due to accumulation of reduced tin.

#### HEATING ELEMENT DESIGN

Satisfactory heating element design requires consideration of several factors whose relative importance varies with the proposed application of the heater.

In this regard there is no substitute for experience. However, it is practical to examine the factors most frequently used and consider solutions for the problems encountered.

Quantity of heat produced in a heating element may be expressed either as British thermal units (abbreviated Btu.), calories, or watts.

```
1 \text{ watt} = 860.01 \text{ (gram)} calories = 3.413 \text{ Btu}.
```

For a given quantity of heat, the wattage is always the same, but the temperature of the heated element is determined by the rapidity with which the medium surrounding the element conducts heat away.

A heater well insulated against heat loss and passing only a moderate current may operate at a bright yellow temperature in one instance, but while passing the same current with the heater exposed to a blast of cold air, the heater remains unchanged in appearance from that at room temperature.

Maximum operating temperature determines the choice of the proper alloy for forming the heating element. The following table is offered as a guide in this selection:

| Maximun<br>Operating<br>°F. |      | Alloy    |                                                                                                                                                                            |
|-----------------------------|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2100                        | 1149 | Tophet A | For approximate temperature difference between coiled and straight wire in air for given amperes, see <i>current temperature characteristics</i> of Tophet A and Tophet C. |
| 1700                        | 927  | Tophet C |                                                                                                                                                                            |

While the same general information applies to heater elements of all descriptions, by far the greatest number of designs involve the use of round wire, close wound on a mandrel, and then stretched, to form a helix at least twice the close-wound length.

The electrical resistance given in the wire tables for the alloys listed, shows the resistance of the wire at 68°F. When, however, the temperature of the wire is above 68°F the resistance increases to some new value.

For convenience in calculating resistance values for a specific application, the electrical resistance is most usefully expressed in terms of per cent increase over that at 68°F. This is shown by the table immediately under the heading listing the alloy concerned.

From the foregoing it becomes apparent that heater element design begins by setting forth the quantity of heat required, and expressing this in terms of watts.

Next, it is necessary to know the voltage at which the element will be operated, and lastly, the space dimensions within which the element is to be mounted.

Many manufacturers of heating elements have based the safe operation of their units on watts dissipated per square inch of wire or ribbon surface under certain conditions. We are unable to give these figures because they vary anywhere from 12 watts per square inch, the generally accepted value for furnace strip, to 50 watts per square inch in flat-iron elements. On page 19 a table of surface areas per lineal foot of furnace strip is given. On pages 92 and 93 the surface areas of wire and ribbon are given.

Because of the care exercised in manufacture and handling alloy wire, it will be found in almost every case that aside from damage through accident or abuse, premature failure of a heating element is caused by poor design or faulty construction.

To illustrate the use of the data available in this handbook, suppose for example it is desired to design a heater coil to furnish 2200 Btu. per hour when connected to 115 volt direct current or single-phase alternating current power source. First, the Watt Hour equivalent of the Btu. is found by dividing 2200 by 3.413. This gives approximately 645 watts.

OHM'S LAW APPLIED: The relationship between watts, volts, amperes and ohms resistance is a group of simple ratios. In particular, the ratio between resistance, volts and amperes is called OHM'S LAW.

Using letters to represent these quantities, let

R = resistance (called ohms)

E = electromotive force (called volts)

I = current (called amperes)

Then  $I = \frac{E}{R}$  or by transposing the letters

$$R = \frac{E}{I}$$
 and  $E = I \times R$ 

The ratio between watts and any two of the above factors may be expressed in several ways as follows: Let W= watts, then

$$W = \frac{E \times E}{R}$$
 or by transposing  $R = \frac{E \times E}{W}$ 

$$W = I \times E$$
 or by transposing  $E = \frac{W}{I}$ 

In the present instance watts = 645 and volts = 115, hence to find the resistance of the heater we use the ratio  $R = \frac{E \times E}{W}$  or  $\frac{115 \times 115}{645}$  which gives approximately 20.5

ohms for the resistance of the coil when heated.

It now becomes necessary to decide on the alloy which will be used. If it is assumed that the heater element will get quite hot, say about 1800°F, Tophet A is the indicated choice.

COLD RESISTANCE: Since the calculated resistance of the heater at 1800°F. was found above to be 20.5 ohms, its resistance at room temperature will be found by using the resistance temperature table located immediately under the heading of the Tophet A wire table.

This shows that at  $1832^{\circ}F$ . the factor 1.071 is used. This is equivalent to saying that at  $68^{\circ}F$ . the resistance shown in the wire table was taken as 100% and at  $1800^{\circ}F$ . had increased about 7%, so that we have 1.00 plus .07 = 1.07 as the factor to be used. In other words, 20.5 ohms at  $1800^{\circ}F$ . equals 1.07 times the resistance at  $68^{\circ}F$ . Therefore,

 $\frac{20.5}{1.07}$  = 19.16 which is the value of the resistance of the heater at 68°F.

On page 89 a table lists minimum wire size recommended for given wattages. Since it is good practice to use a heavier gauge than the recommended minimum, No. 21 wire is selected in this case.

Assume now that the space in which the coil will be mounted consists of a spiral groove 32" long. This limits the maximum length of the helix.

Because the helix should be at least twice the length of the close-wound coil previously mentioned, the maximum length of the close-wound coil cannot exceed 16". Dividing the total resistance of the heater by the length of the close-wound coil, i.e.,  $\frac{19.16}{16}$ 

gives the permissible resistance per inch of the close-wound coil, in this instance 1.1975 ohms.

For all practical purposes where the heating element operates above  $1000^{\circ}$ F. an increase of 7% in resistance can be allowed for Tophet A and 12% for Tophet C.

On pages 90 and 91 a table is given showing a number of coil sizes of Tophet A and Tophet C with the corresponding resistance per inch of close-wound coil for the indicated B & S gauge. Here the value 1.261 is shown for No. 21 B & S gauge close-wound with an outside diameter of coil of .200". As such a coil will be only 15.2" long when its total resistance is 19.16 ohms, it will serve. It would be preferable to use a larger outside diameter, say .250" which is shown to have a close-wound resistance of 1.628 ohms per inch. The total length of close-wound coil would then be only 11.8" and when stretched to 32", the distance between adjacent turns would conform with good practice, which allows a space of at least one and one-half the wire diameter. Heaters operating at lower temperatures may use a somewhat closer spacing.

LENGTH OF COIL CALCULATION: The length of wire, resistance per inch of close-wound coil, and outside diameter of coil for wire and mandrel sizes not shown in the above cited table may be found by interpolation with sufficient accuracy for most work, but if it is found desirable to calculate the size or value of such a coil this may readily be done:

- 1. Add together the diameter of the wire and the diameter of the mandrel in inches.
- 2. Multiply the sum obtained by 3.1416.

The result will be the length of one turn of wire about the mandrel. The total number

of turns will give the total length of wire used. The resistance per inch of close-wound coil is readily found by multiplying the length of one turn by the resistance per foot of the size wire being used, and then dividing the amount thus obtained by twelve times the diameter of the wire.

As previously calculated, the ohms per inch of close-wound coil divided into the total resistance required gives the length of the close-wound coil.

When wire is wound on a mandrel, a springing away occurs as soon as the winding tension is released. On average coils with diameters up to .300", .004 to .005 inch should be allowed. For diameters greater than .300" a greater allowance must be made, and is best determined by testing.

RIBBON: Heater elements fashioned from ribbon are better suited to some applications than the coil form discussed above. In any event, the relationship between watts, volts and ohms remains unchanged and the same symbols are used as before.

The length of the ribbon will have to be worked out from the dimensions of the shape of the heater and the available mounting space.

Suppose for illustration that a 645 watt heater is required to operate as previously described and that the length of the ribbon will be about 25 feet. Calculating for use of Tophet A alloy operating at  $1800^{\circ}$ F. as before, the same cold resistance will be required, viz. 19.16 ohms. This divided by the total length of 25 feet shows that the ribbon will need to have a cold resistance of .7664 ohms per foot. Consulting the table showing resistance of Tophet A ribbon, it will be found that  $\frac{1}{16}$  x .0113 ribbon has a nominal resistance of .7682 ohms per foot. This will provide the required resistance.

It is standard practice to hold the resistance per foot of ribbon to plus or minus 5%. Closer tolerance can be obtained if specified. Special sizes in other widths or thicknesses than those shown in the table can be rolled to meet special resistance requirements.

230 VOLT CIRCUITS: Heaters designed to operate on 230 volts will require four times the resistance needed for the same wattage elements operating on 115 volts. To fit the same heating space, a smaller size wire or thinner ribbon will have to be used. For this reason it is sometimes difficult to design a rugged element for 230 volts, particularly where the size of the appliance limits the available heating area.

DESIGN PRECAUTIONS: In the design of heating elements certain precautions should be taken and some of these will be outlined in brief.

When a coil is suspended on ceramic insulators or hooks, it is very important that the holes in the insulators be large enough to permit the coil to slide through freely to allow for expansion and contraction throughout the entire length of the coil. If a coil becomes caught in one of the insulators it will sag in this section and may cause a short circuit. Coils should be supported at frequent intervals.

A great many failures take place at the terminals due to poor contact. If brass bolts, nuts or washers are used to connect the element to the source of power and there is

sufficient heat to cause oxidation at the connection, an arc will form which will burn through the element at this point. While mechanical contacts are sometimes satisfactory, it is better to have welded or brazed joints outside of the heat zone.

The selection of lead wire in an appliance is important. Copper should never be used where the temperature exceeds 300°F.

Nickel, Mangrid E or Monel asbestos covered wire should be used for temperatures up to 1000°F. It is sometimes advisable to double back the wire from the element itself to form the lead. In this case the loop formed at the end should not be cut.

THREE PHASE CIRCUITS: Elements made for operating on a 3-phase circuit are usually designed to provide a balanced load on each phase. There are two simple designs which accomplish this result, one is called a DELTA connection because it resembles the Greek letter Delta. This heater consists essentially of three single-phase elements all alike having their ends connected so as to form a triangle. One line wire is connected to each corner of the triangle where the coils are joined, and the voltage across each element is the full line voltage. Calculations for the individual coils are made exactly as previously outlined.

The second method is called a STAR or Y connection because the three elements are connected at one point so that they are shaped like the letter Y. One line wire is connected to each extremity of the Y. By inspection it is evident that the voltage between any two terminals of the Y is across two elements in series. Due to the phase difference of the voltage in the line wires, however, the voltage across any one element

to the center connection is not one-half of the rated line voltage, i.e.  $\frac{E}{2}$  but is  $\frac{E}{1.732}$ .

To design a Y connected element for a three-phase system, say 230 volts, three single-phase elements all alike are designed for  $\frac{230}{1.732}$  or 133 volts. Calculations for the individual elements are made exactly as previously outlined.

The difference in the DELTA and Y form of construction is emphasized by the difference in the voltage across the individual elements. Advantage is taken of this fact to afford two-heat control. A set of elements designed for DELTA connection may be wired to a suitable switch so that when the switch is operated, the terminals are changed from DELTA to Y connection. This will reduce the wattage of the system to one-third the power of the DELTA connection. The factor 1.732 is used for determining watts in either the DELTA or Y connection, viz.

Watts = line voltage x current x 1.732

# TABLE FOR COLD RESISTANCE AND MINIMUM RECOMMENDED WIRE SIZES

| ***             | Resi              | HET A               | Resis  | HET C<br>stance<br>. (68°F.) | Recom  | imum<br>mended<br>S Sizes | Watts  |
|-----------------|-------------------|---------------------|--------|------------------------------|--------|---------------------------|--------|
| Watts<br>Rating | at 20°C<br>115 V. | . (68°F.)<br>230 V. | 115 V. | 230 V.                       | 115 V. | 230 V.                    | Rating |
| 25              | 494.09            | 1976.34             | 472.40 | 1889.59                      | 32     | 35                        | 25     |
| 50              | 247.04            | 988.17              | 236.20 | 944.79                       | 31     | 34                        | 50     |
| 75              | 164.69            | 658.78              | 157.46 | 629.86                       | 31     | 34                        | 75     |
| 100             | 123.52            | 494.09              | 118.10 | 472.40                       | 30     | 33                        | 100    |
| 150             | 82.35             | 329.39              | 78.74  | 314.93                       | 30     | 33                        | 150    |
| 200             | 61.77             | 247.04              | 59.05  | 236.20                       | 29     | 32                        | 200    |
| 250             | 49.41             | 197.63              | 47.24  | 188.96                       | 28     | 31                        | 250    |
| 300             | 41.17             | 164.69              | 39.36  | 157.46                       | 28     | 31                        | 300    |
| 350             | 35.30             | 141.16              | 33.75  | 134.97                       | 27     | 30                        | 350    |
| 400             | 30.88             | 123.52              | 29.52  | 118.10                       | 26     | 29                        | 400    |
| 450             | 27.45             | 109.80              | 26.25  | 104.98                       | 24     | 27                        | 450    |
| 500             | 24.70             | 98.82               | 23.62  | 94.48                        | 24     | 27                        | 500    |
| 550             | 22.46             | 89.83               | 21.48  | 85.89                        | 23     | 26                        | 550    |
| 600             | 20.59             | 82.35               | 19.68  | 78.74                        | 23     | 26                        | 600    |
| 650             | 19.01             | 76.01               | 18.17  | 72.67                        | 23     | 26                        | 650    |
| 700             | 17.64             | 70.58               | 16.87  | 67.48                        | 22     | 25                        | 700    |
| 750             | 16.47             | 65.88               | 15.74  | 62.98                        | 22     | 25                        | 750    |
| 800             | 15.44             | 61.77               | 14.76  | 59.05                        | 22     | 25                        | 800    |
| 850             | 14.53             | 58.12               | 13.90  | 55.57                        | 21     | 24                        | 850    |
| 900             | 13.72             | 54.90               | 13.12  | 52.49                        | 21     | 24                        | 900    |
| 950             | 13.00             | 52.01               | 12.43  | 49.72                        | 21     | 24                        | 950    |
| 1000            | 12.36             | 49.41               | 11.81  | 47.24                        | 20     | 23                        | 1000   |
| 1050            | 11.77             | 47.05               | 11.25  | 44.99                        | 20     | 23                        | 1050   |
| 1100            | 11.23             | 44.92               | 10.73  | 42.94                        | 20     | 23                        | 1100   |
| 1150            | 10.74             | 42.96               | 10.27  | 41.08                        | 19     | 22                        | 1150   |
| 1200            | 10.29             | 41.17               | 9.84   | 39.36                        | 19     | 22                        | 1200   |
| 1250            | 9.88              | 39.53               | 9.45   | 37.79                        | 18     | 21                        | 1250   |
| 1300            | 9.50              | 38.00               | 9.08   | 36.34                        | 18     | 21                        | 1300   |
| 1350            | 9.15              | 36.60               | 8.75   | 35.00                        | 17     | 20                        | 1350   |
| 1400            | 8.83              | 35.30               | 8.44   | 33.75                        | 17     | 20                        | 1400   |
| 1450            | 8.52              | 34.07               | 8.14   | 32.58                        | 16     | 19                        | 1450   |
| 1500            | 8.24              | 32.94               | 7.88   | 31.50                        | 16     | 19                        | 1500   |
| 1750            | 7.06              | 28.23               | 6.75   | 27.00                        | 15     | 18                        | 1750   |
| 2000            | 6.17              | 24.70               | 5.90   | 23.62                        | 14     | 17                        | 2000   |
| 2500            | 4.94              | 19.76               | 4.72   | 18.90                        | 13     | 16                        | 2500   |
| 2750            | 4.49              | 17.97               | 4.30   | 17.18                        | 12     | 15                        | 2750   |
| 3000            | 4.12              | 16.47               | 3.94   | 15.74                        | 12     | 15                        | 3000   |

# TOPHET A®

#### Ohms Per Inch of Close-Wound Coils

|       | de Dia.<br>nches  | .750   | .625   | .500   | .375   | .300   | .250   | .225   | .200   | .175   | .150   | .125   | .090   | .060  | .030  |
|-------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| Wire  | Sizes             |        |        |        |        |        |        |        |        |        |        |        |        |       |       |
| B & S | Dia. in<br>Inches |        |        |        |        |        |        |        |        |        |        |        |        |       |       |
| 8     | .128              | . 0505 | . 0403 | . 0301 |        |        |        |        |        |        |        |        |        |       |       |
| 9     | .114              | .0730  | .0587  | .0443  |        |        |        |        |        |        |        |        |        |       |       |
| 10    | .102              | . 104  | . 0839 | . 0638 |        |        |        |        |        |        |        |        |        |       |       |
| 11    | .091              | .149   | . 121  | .0923  |        |        |        |        |        |        |        |        |        |       |       |
| 12    | .081              | .214   | . 174  | . 1341 | . 0941 |        |        |        |        |        |        |        |        |       |       |
| 13    | .072              | .309   | . 252  | . 1949 | . 1380 | . 1038 | .0810  |        |        |        |        |        |        |       |       |
| 14    | .064              | . 445  | .364   | . 2830 | .2018  | . 1532 | . 1207 | . 105  | .088   | .072   |        |        |        |       |       |
| 15    | .057              | . 636  | . 522  | . 4069 | . 2920 | 223    | . 1771 | . 154  | . 131  | .108   |        |        |        |       |       |
| 16    | .051              | .897   | . 736  | . 5758 | 4179   | .319   | . 2550 | . 223  | . 191  | .159   | . 127  |        |        |       |       |
| 17    | .045              | 1.32   | 1.082  | .8494  | . 6160 | . 476  | . 3826 | .336   | . 289  | . 243  | . 196  | .149   |        |       |       |
| 18    | .040              | 1.89   | 1.555  | 1.222  | . 8905 | . 691  | . 5581 | . 492  | . 425  | . 359  | . 292  | . 226  |        |       |       |
| 19    | .036              | 2.60   | 2.147  | 1.692  | 1.235  | . 963  | . 7803 | . 689  | . 598  | . 507  | .416   | .325   |        |       |       |
| 20    | .032              | 3.66   | 3.029  | 2.389  | 1.750  | 1.368  | 1.111  | .984   | . 856  | .729   | . 601  | . 473  |        |       |       |
| 21    | .0285             |        | 4.384  | 3.465  | 2.546  | 1.996  | 1.628  | 1.444  | 1.261  | 1.077  | . 893  | . 709  | . 452  |       |       |
| 22    | .0253             |        |        | 4.994  | 3.679  | 2.891  | 2.39   | 2.102  | 1.838  | 1.575  | 1.312  | 1.049  | . 681  |       |       |
| 23    | .0226             |        |        | 7.033  | 5.191  | 4.088  | 3.35   | 2.982  | 2.614  | 2.246  | 1.877  | 1.509  | . 993  |       |       |
| 24    | .0201             |        |        |        |        | 5.866  | 4.82   | 4.293  | 3.770  | 3.246  | 2.722  | 2.199  | 1.465  | .836  |       |
| 25    | .0179             |        |        |        |        | 8.371  | 6.89   | 6.146  | 5.404  | 4.662  | 3.920  | 3.179  | 2.140  | 1.250 |       |
| 26    | .0159             |        |        |        |        |        | 9.91   | 8.852  | 7.793  | 6.735  | 5.677  | 4.618  | 3.137  | 1.866 |       |
| 27    | .0142             |        |        |        |        |        | 14.033 | 12.544 | 11.058 | 9.570  | 8.082  | 6.594  | 4.510  | 2.726 |       |
| 28    | .0126             |        |        |        |        |        | 20.174 | 18.051 | 15.924 | 13.801 | 11.678 | 9.551  | 6.579  | 4.028 |       |
| 29    | .0113             |        |        |        |        |        |        |        |        |        |        | 13.408 | 9.279  | 5.743 | 2.203 |
| 30    | .010              |        |        |        |        |        |        |        |        |        |        | 19.570 | 13.612 | 8.510 | 3.40  |

# TOPHET C°

#### Ohms Per Inch of Close-Wound Coils

| Outside<br>in In |                   | .750   | .625  | .500   | .375   | .300  | .250   | .225   | .200   | .175   | .150   | .125   | .090   | .060  | .030 |
|------------------|-------------------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|-------|------|
| Wire             | Size              |        |       |        |        |       |        |        |        |        |        |        |        |       |      |
| B&S              | Dia. in<br>Inches |        |       |        |        |       |        |        |        |        |        |        |        |       |      |
| 8                | .128              | .0525  | .0419 | . 0313 |        |       |        |        |        |        |        |        |        |       |      |
| 9                | .114              | .0759  | .061  | . 0461 |        |       |        |        |        |        |        |        |        |       |      |
| 10               | .102              | . 1082 | .0873 | . 0664 |        |       |        |        |        |        |        |        |        |       |      |
| 11               | .091              | . 155  | .126  | .0960  |        |       |        |        |        |        |        |        |        |       |      |
| 12               | .081              | . 223  | . 181 | . 139  | . 0979 |       |        |        |        |        |        |        |        |       |      |
| 13               | .072              | . 321  | . 262 | . 203  | .144   | .108  | .0842  |        |        |        |        |        |        |       |      |
| 14               | .064              | . 463  | .379  | . 294  | . 210  | . 159 | . 1255 | . 1092 | .0915  | . 075  |        | 29     |        |       |      |
| 15               | .057              | . 661  | . 543 | . 423  | . 304  | . 232 | .1842  | . 1602 | . 136  | .112   |        |        |        |       |      |
| 16               | .051              | .933   | . 765 | . 599  | . 435  | .332  | . 2652 | . 232  | . 199  | . 165  | . 132  |        |        |       |      |
| 17               | .045              | 1.373  | 1.125 | .883   | . 641  | . 495 | .3979  | .349   | .301   | . 253  | . 204  | . 155  |        |       |      |
| 18               | .040              | 1.966  | 1.617 | 1.271  | .926   | .719  | . 5804 | .512   | . 442  | .373   | .304   | . 235  |        |       |      |
| 19               | .036              | 2.704  | 2.233 | 1.760  | 1.284  | 1.002 | .8115  | .717   | . 622  | . 527  | . 433  | .338   |        |       |      |
| 20               | .032              | 3.806  | 3.150 | 2.485  | 1.82   | 1.423 | 1.155  | 1.023  | .890   | . 758  | . 625  | . 492  |        |       |      |
| 21               | .0285             |        | 4.559 | 3.604  | 2.648  | 2.076 | 1.693  | 1.502  | 1.311  | 1.120  | .929   | . 737  | . 470  |       |      |
| 22               | .0253             |        |       | 5.194  | 3.826  | 3.007 | 2.486  | 2.186  | 1.912  | 1.638  | 1.364  | 1.091  | . 708  |       |      |
| 23               | .0226             |        |       | 7.314  | 5.399  | 4.252 | 3.484  | 3.101  | 2.719  | 2.336  | 1.952  | 1.569  | 1.032  |       |      |
| 24               | .0201             |        |       |        |        | 6.101 | 5.013  | 4.465  | 3.921  | 3.376  | 2.831  | 2.287  | 1.524  | .869  |      |
| 25               | .0179             |        |       |        |        | 8.706 | 7.166  | 6.392  | 5.620  | 4.848  | 4.077  | 3.306  | 2.226  | 1.300 |      |
| 26               | .0159             |        |       |        |        |       | 10.306 | 9.206  | 8.105  | 7.004  | 5.904  | 4.803  | 3.262  | 1.941 |      |
| 27               | .0142             |        |       |        |        |       | 14.594 | 13.046 | 11.500 | 9.953  | 8.405  | 6.858  | 4.690  | 2.835 |      |
| 28               | .0126             |        |       |        |        |       | 20.981 | 18.773 | 16.561 | 14.353 | 12.145 | 9.933  | 6.842  | 4.189 |      |
| 29               | .0113             |        |       |        |        |       |        |        |        |        |        | 13.944 | 9.650  | 5.973 | 2.29 |
| 30               | .010              |        |       |        |        |       |        |        |        |        |        | 20.353 | 14.156 | 8.850 | 3.53 |

# SURFACE AREAS OF ROUND WIRE

In Sq. In. Per Lineal Foot

| B & S | Diameter in Inches | Surface Area |
|-------|--------------------|--------------|
| 000   | .410               | 15.4566      |
| 00    | .365               | 13.7592      |
| 0     | .325               | 12.2522      |
| 1     | .289               | 10.8948      |
| 2     |                    |              |
| 2     | .258               | 9.7260       |
| 3     | .229               | 8.6328       |
| 4     | .204               | 7.6908       |
| 5     | .182               | 6.8616       |
| 6     | .162               | 6.1068       |
| 7     | .144               | 5.4288       |
| 8     | .128               | 4.8252       |
| 9     | .114               | 4.2972       |
| 10    | .102               | 3.8448       |
| 11    | .091               | 3.4308       |
| 12    | .081               | 3.0540       |
| 13    | .072               | 2.7144       |
| 40000 |                    |              |
| 14    | .064               | 2.4132       |
| 15    | .057               | 2.1492       |
| 16    | .051               | 1.9224       |
| 17    | .045               | 1.6968       |
| 18    | .040               | 1.5084       |
| 19    | .036               | 1.3572       |
| 20    | .032               | 1.2060       |
| 21    | .0285              | 1.0740       |
| 22    | .0253              | . 9540       |
| 23    | .0226              | . 8520       |
| 24    | .0201              | .7572        |
| 25    | .0179              | .6744        |
| 26    | .0159              | .6000        |
| 27    | .0142              | . 5352       |
| 28    | .0126              | .4752        |
| 29    | .0113              | . 4260       |
| 30    |                    |              |
| 31    | .010               | .3768        |
|       | .0089              | .3360        |
| 32    | .008               | . 3012       |
| 33    | .0071              | . 2676       |
| 34    | .0063              | .2376        |
| 35    | .0056              | .2112        |
| 36    | .005               | . 1884       |
| 37    | .0045              | .1692        |
| 38    | .004               | . 1512       |
| 39    | .0035              | . 1308       |
| 40    | .0031              | .1164        |

# SURFACE AREA OF RIBBON IN SQUARE INCHES PER LINEAL FOOT

| Thic  | ckness |                 |               |               |             |                | WIDTH     | I IN IN                   | ICHES     |            |                     |           |           |             |
|-------|--------|-----------------|---------------|---------------|-------------|----------------|-----------|---------------------------|-----------|------------|---------------------|-----------|-----------|-------------|
| B & S | Inches | 1⁄64<br>.015625 | 1½2<br>.03125 | ³‰<br>.046875 | ½6<br>.0625 | 3/32<br>.09375 | ½<br>.125 | ³⁄₁ <sub>6</sub><br>.1875 | ½<br>.250 | ³₅<br>.375 | ½<br>.500           | ⅓<br>.625 | ¾<br>.750 | 1″<br>1.000 |
| 10    | .102   |                 |               |               |             |                |           |                           | 8.448     | 11.44      | 14.44               | 17.44     | 20.44     | 26.44       |
| 11    | .091   |                 |               |               |             |                |           |                           | 8.184     | 11.18      | 14.18               | 17.18     | 20.18     | 26.18       |
| 12    | .081   |                 |               |               |             |                |           |                           | 7.944     | 10.94      | 13.94               | 16.94     | 19.94     | 25.94       |
| 13    | .072   |                 |               |               |             |                |           |                           | 7.728     | 10.72      | 13.72               | 16.72     | 19.72     | 25.72       |
| 14    | .064   |                 |               |               |             |                |           | 6.036                     | 7.536     | 10.53      | 13.53               | 16.53     | 19.53     | 25.53       |
| 15    | .057   |                 |               |               |             |                |           | 5.868                     | 7.368     | 10.36      | 13.36               | 16.36     | 19.36     | 25.36       |
| 16    | .051   |                 |               |               |             |                | 4.224     | 5.724                     | .7.224    | 10.22      | 13.22               | 16.22     | 19.22     | 25.32       |
| 17    | .045   |                 |               |               |             |                | 4.080     | 5.580                     | 7.080     | 10.08      | 13.08               | 16.08     | 19.08     | 25.08       |
| 18    | .040   |                 |               |               |             |                | 3.960     | 5.460                     | 6.960     | 9.960      | 12.96               | 15.96     | 18.96     | 24.96       |
| 19    | .036   |                 |               |               |             |                | 3.864     | 5.364                     | 6.864     | 9.864      | 12.86               | 15.86     | 18.86     | 24.86       |
| 20    | .032   |                 |               |               |             |                | 3.768     | 5.268                     | 6.768     | 9.768      | 12.76               | 15.76     | 18.76     | 24.76       |
| 21    | .0285  |                 |               |               |             |                | 3.684     | 5.184                     | 6.684     | 9.684      | 12.68               | 15.68     | 18.68     | 24.68       |
| 22    | .0253  |                 |               |               |             |                | 3.607     | 5.107                     | 6.607     | 9.607      | 12.60               | 15.60     | 18.60     | 24.60       |
| 23    | .0226  |                 |               |               |             |                | 3.542     | 5.042                     | 6.542     | 9.542      | 12.54               | 15.54     | 18.54     | 24.54       |
| 24    | .0201  |                 |               | 1.607         | 1.982       | 2.492          | 3.482     | 4.982                     | 6.482     | 9.482      | 12.48               | 15.48     | 18.48     | 24.48       |
| 25    | .0179  |                 |               | 1.554         | 1.929       | 2.439          | 3.429     | 4.929                     | 6.429     | 9.429      | 12.42               | 15.42     | 18.42     | 24.42       |
| 26    | .0159  |                 |               | 1.506         | 1.881       | 2.391          | 3.381     | 4.881                     | 6.381     | 9.381      | 12.38               | 15.38     | 18.38     | 24.38       |
| 27    | .0142  |                 |               | 1.465         | 1.840       | 2.350          | 3.340     | 4.840                     | 6.340     | 9.340      | 12.34               | 15.34     | 18.34     | 24.34       |
| 28    | .0126  |                 |               | 1.427         | 1.802       | 2.312          | 3.302     | 4.802                     | 6.302     | 9.301      | 12.30               | 15.30     | 18.30     | 24.30       |
| 29    | .0113  |                 |               | 1.396         | 1.771       | 2.281          | 3.271     | 4.771                     | 6.271     | 9.271      | 12.27               | 15.27     | 18.27     | 24.27       |
| 30    | .010   | .6150           | .9900         | 1.365         | 1.740       | 2.250          | 3.240     | 4.740                     | 6.240     | 9.240      | 12.24               | 15.24     | 18.24     | 24.24       |
| 31    | .0089  | . 5886          | .9636         | 1.338         | 1.713       | 2.223          | 3.213     | 4.713                     | 6.213     | 9.213      | 12.21               | 15.21     | 18.21     | 24.21       |
| 32    | .008   | .5670           | .9420         | 1.317         | 1.692       | 2.202          | 3.192     | 4.692                     | 6.192     | 9.192      | 12.19               | 15.19     | 18.19     | 24.19       |
| 33    | .0071  | . 5452          | .9202         | 1.295         | 1.670       | 2.180          | 3.170     | 4.670                     | 6.170     | 9.170      | 12.17               | 15.17     | 18.17     | 24.17       |
| 34    | .0063  | . 5262          | .9012         | 1.276         | 1.651       | 2.161          | 3.151     | 4.651                     | 6.151     | 9.151      | 12.15               | 15.15     | 18.15     | 24.15       |
| 35    | .0056  | .5094           | .8844         | 1.259         | 1.634       | 2.144          | 3.134     | 4.634                     | 6.134     | 9.134      | 12.13               | 15.13     | 18.13     | 24.13       |
| 36    | .005   | . 4950          | .8700         |               | 1.620       | 2.130          |           | 4.620                     | 6.120     |            |                     | 15.12     | 18.12     | 24.12       |
| 37    | .0045  | . 4830          | .8580         | 1.233         | 1.608       | 2.118          | 3.108     | 4.608                     | 6.108     |            |                     | 15.10     | 18.10     | 24.10       |
| 38    | .004   | . 4610          | .8460         | 1.221         | 1.596       | 2.106          | 3.096     | 4.596                     | 6.096     |            |                     | 15.09     | 18.09     | 24.09       |
| 39    | .0035  | . 4590          | .8340         | 1.209         | 1.584       | 2.094          | 3.084     | 4.584                     | 6.084     |            | Services or desired | 15.08     | 18.08     | 24.08       |
| 40    | .0031  | . 4494          | .8240         | 1.199         | 1.574       | 2.084          | 3.074     | 4.574                     | 6.074     | 9.074      | 12.07               | 15.07     | 18.07     | 24.07       |

# BARE COPPER WIRE TABLE

Weight and Resistance

|                          |                                           | We                                        | ight                                      | Resistance                                    | @ 20°C, 68°F.                                             |                          |
|--------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------|
| Size Awg                 | Nominal<br>Diameter,<br>Inches            | Pounds<br>Per 1000 Feet                   | Feet<br>Per Pound                         | Ohms<br>Per 1000 Feet                         | Ohms<br>Per Pound                                         | Size Awg                 |
| 4/0<br>3/0<br>2/0<br>1/0 | .4600<br>.4096<br>.3648<br>.3249<br>.2893 | 640.5<br>507.9<br>402.8<br>319.5<br>253.3 | 1.561<br>1.968<br>2.482<br>3.130<br>3.947 | .04901<br>.06180<br>.07793<br>.09827<br>.1239 | .00007652<br>.0001217<br>.0001935<br>.0003076<br>.0004891 | 4/0<br>3/0<br>2/0<br>1/0 |
| 2                        | .2576                                     | 200.9                                     | 4.977                                     | . 1563                                        | .0007778                                                  | 2                        |
| 3                        | .2294                                     | 159.3                                     | 6.276                                     | . 1970                                        | .001237                                                   | 3                        |
| 4                        | .2043                                     | 126.4                                     | 7.914                                     | . 2485                                        | .001966                                                   | 4                        |
| 5                        | .1819                                     | 100.2                                     | 9.980                                     | . 3133                                        | .003127                                                   | 5                        |
| 6                        | .1620                                     | 79.46                                     | 12.58                                     | . 3951                                        | .004972                                                   | 6                        |
| 7                        | .1443                                     | 63.02                                     | 15.87                                     | . 4982                                        | .007905                                                   | 7                        |
| 8                        | .1285                                     | 49.98                                     | 20.01                                     | . 6282                                        | .01257                                                    | 8                        |
| 9                        | .1144                                     | 39.63                                     | 25.23                                     | . 7921                                        | .01999                                                    | 9                        |
| 10                       | .1019                                     | 31.43                                     | 31.82                                     | . 9989                                        | .03178                                                    | 10                       |
| 11                       | .09074                                    | 24.92                                     | 40.12                                     | 1 . 260                                       | .05053                                                    | 11                       |
| 12                       | .08081                                    | 19.77                                     | 50.59                                     | 1.588                                         | .08035                                                    | 12                       |
| 13                       | .07196                                    | 15.68                                     | 63.80                                     | 2.003                                         | .1278                                                     | 13                       |
| 14                       | .06408                                    | 12.43                                     | 80.44                                     | 2.525                                         | .2032                                                     | 14                       |
| 15                       | .05707                                    | 9.858                                     | 101.4                                     | 3.184                                         | .3230                                                     | 15                       |
| 16                       | .05082                                    | 7.818                                     | 127.9                                     | 4.016                                         | .5136                                                     | 16                       |
| 17                       | .04526                                    | 6.200                                     | 161.3                                     | 5.064                                         | .8167                                                     | 17                       |
| 18                       | .04030                                    | 4.917                                     | 203.4                                     | 6.385                                         | 1.299                                                     | 18                       |
| 19                       | .03589                                    | 3.899                                     | 256.5                                     | 8.051                                         | 2.065                                                     | 19                       |
| 20                       | .03196                                    | 3.092                                     | 323.4                                     | 10.15                                         | 3.283                                                     | 20                       |
| 21                       | .02846                                    | 2.452                                     | 407.8                                     | 12.80                                         | 5.221                                                     | 21                       |
| 22                       | .02535                                    | 1.945                                     | 514.2                                     | 16.14                                         | 8.301                                                     | 22                       |
| 23                       | .02257                                    | 1.542                                     | 648.2                                     | 20.36                                         | 13.20                                                     | 23                       |
| 24                       | .02010                                    | 1.223                                     | 817.7                                     | 25.67                                         | 20.99                                                     | 24                       |
| 25                       | .01790                                    | .9699                                     | 1,031                                     | 32.37                                         | 33.37                                                     | 25                       |
| 26                       | .01594                                    | .7692                                     | 1,300                                     | 40.81                                         | 53.06                                                     | 26                       |
| 27                       | .01420                                    | .6100                                     | 1,639                                     | 51.47                                         | 84.37                                                     | 27                       |
| 28                       | .01264                                    | .4837                                     | 2,067                                     | 64.90                                         | 134.2                                                     | 28                       |
| 29                       | .01126                                    | .3836                                     | 2,607                                     | 81.83                                         | 213.3                                                     | 29                       |
| 30                       | .01003                                    | .3042                                     | 3,287                                     | 103.2                                         | 339.2                                                     | 30                       |
| 31                       | .008928                                   | .2413                                     | 4,145                                     | 130.1                                         | 539.3                                                     | 31                       |
| 32                       | .007950                                   | . 1913                                    | 5,227                                     | 164.1                                         | 857.6                                                     | 32                       |
| 33                       | .007080                                   | . 1517                                    | 6,591                                     | 206.9                                         | 1,364                                                     | 33                       |
| 34                       | .006305                                   | . 1203                                    | 8,310                                     | 260.9                                         | 2,168                                                     | 34                       |
| 35                       | .005615                                   | . 09542                                   | 10,480                                    | 329.0                                         | 3,448                                                     | 35                       |
| 36                       | .005000                                   | . 07568                                   | 13,210                                    | 414.8                                         | 5,482                                                     | 36                       |
| 37                       | .004453                                   | .06001                                    | 16,660                                    | 523.1                                         | 8,717                                                     | 37                       |
| 38                       | .003965                                   | .04759                                    | 21,010                                    | 659.6                                         | 13,860                                                    | 38                       |
| 39                       | .003531                                   | .03774                                    | 26,500                                    | 831.8                                         | 22,040                                                    | 39                       |
| 40                       | .003145                                   | .02993                                    | 33,410                                    | 1,049                                         | 35,040                                                    | 40                       |
| 41                       | .002800                                   | .02373                                    | 42,140                                    | 1,323                                         | 55,740                                                    | 41                       |
| 42                       | .002493                                   | .01881                                    | 53,160                                    | 1,669                                         | 88,700                                                    | 42                       |
| 43                       | .002220                                   | .01492                                    | 67,020                                    | 2,104                                         | 141,000                                                   | 43                       |
| 44                       | .001977                                   | .01183                                    | 84,530                                    | 2,654                                         | 224,300                                                   | 44                       |
| 45                       | .001760                                   | .009377                                   | 106,600                                   | 3,348                                         | 357,000                                                   | 45                       |
| 46                       | .001567                                   | .007431                                   | 134,600                                   | 4,225                                         | 568,500                                                   | 46                       |

The above table is for reference only. We have had requests to insert in our handbook a table on copper wire inasmuch as copper is used in circuits with resistance wire. Wilbur B. Driver Company does not manufacture or supply copper wire.

# MILLIMETER EQUIVALENTS

#### IN INCHES

| MM   | Inches | MM   | Inches | MM    | Inches |
|------|--------|------|--------|-------|--------|
| .01  | .0004  | . 45 | .0177  | .89   | .0350  |
| .02  | .0008  | . 46 | .0181  | .90   | .0354  |
|      |        |      | .0185  | .91   | .0358  |
| .03  | .0012  | .47  |        |       | .0362  |
| .04  | .0016  | .48  | .0189  | .92   | .0362  |
| .05  | .0020  | . 49 | .0193  | . 95  | .0300  |
| .06  | .0024  | . 50 | .0197  | .94   | .0370  |
| .07  | .0028  | . 51 | .0201  | .95   | .0374  |
| .08  | .0031  | . 52 | .0205  | .96   | .0378  |
| .09  | .0035  | . 53 | .0209  | . 97  | .0382  |
| . 10 | .0039  | .54  | .0213  | .98   | .0386  |
| .11  | .0043  | .55  | .0217  | . 99  | .0390  |
| .12  | .0047  | .56  | .0221  | 1.00  | .0394  |
| .13  | .0051  | .57  | .0224  | 2.00  | .0787  |
|      | .0055  | .58  | .0228  | 3.00  | .1181  |
| .14  | .0059  | .59  | .0232  | 4.00  | .1575  |
| . 15 | .0059  | . 59 | .0232  | 4.00  | .1373  |
| . 16 | .0063  | . 60 | .0236  | 5.00  | .1969  |
| .17  | .0067  | .61  | .0240  | 6.00  | .2362  |
| .18  | .0071  | .62  | .0244  | 7.00  | .2756  |
| . 19 | .0075  | .63  | .0248  | 8.00  | .3150  |
| . 20 | .0079  | .64  | .0252  | 9.00  | .3543  |
| . 20 | .0013  | .01  | .0202  | 0.00  |        |
| .21  | .0083  | . 65 | .0256  | 10.00 | .3937  |
| .22  | .0087  | .66  | .0260  | 11.00 | .4331  |
| .23  | .0091  | .67  | .0264  | 12.00 | .4724  |
| .24  | .0094  | .68  | .0268  | 13.00 | .5118  |
| . 25 | .0098  | .69  | .0272  | 14.00 | .5512  |
| . 20 | .0050  | .00  | .0212  | 11.00 |        |
| . 26 | .0102  | .70  | .0276  | 15.00 | .5906  |
| .27  | .0106  | .71  | .0280  | 16.00 | .6299  |
| .28  | .0110  | .72  | .0284  | 17.00 | .6693  |
| .29  | .0114  | .73  | .0287  | 18.00 | .7087  |
| .30  | .0118  | .74  | .0291  | 19.00 | .7480  |
|      |        |      | 2005   | 20.00 | 7047   |
| .31  | .0122  | . 75 | .0295  | 20.00 | .7847  |
| .32  | .0126  | .76  | .0299  | 21.00 | .8268  |
| . 33 | .0130  | .77  | .0303  | 22.00 | .8661  |
| . 34 | .0134  | . 78 | .0307  | 23.00 | .9055  |
| .35  | .0138  | .79  | .0311  | 24.00 | .9449  |
| .36  | .0142  | .80  | .0315  | 25.00 | .9843  |
| .37  | .0146  | . 81 | .0319  | 26.00 | 1.0236 |
| .38  | .0150  | .82  | .0323  | 27.00 | 1.0630 |
| .39  | .0154  | .83  | .0327  | 28.00 | 1.1024 |
| . 40 | .0158  | .84  | .0331  | 29.00 | 1.1417 |
| 41   | 0161   | OF.  | 0225   | 30.00 | 1.1811 |
| .41  | .0161  | .85  | .0335  |       | 1.1811 |
| . 42 | .0165  | .86  | .0339  | 31.00 |        |
| . 43 | .0169  | .87  | .0343  | 32.00 | 1.2598 |
| . 44 | .0173  | .88  | .0347  | 33.00 | 1.2992 |

# TEMPERATURE CONVERSION TABLE

|                                      |                            | 0 to                                      | 100                                  |                            |                                           |     |     | 100 to | 1000                            |                                 |                                      |
|--------------------------------------|----------------------------|-------------------------------------------|--------------------------------------|----------------------------|-------------------------------------------|-----|-----|--------|---------------------------------|---------------------------------|--------------------------------------|
| C.                                   |                            | F.                                        | C.                                   |                            | F.                                        | C.  |     | F.     | C.                              |                                 | F.                                   |
| -17.8                                | 0                          | 32.0                                      | 10.0                                 | 50                         | 122.0                                     | 38  | 100 | 212    | 260                             | 500                             | 932                                  |
| -17.2                                | 1                          | 33.8                                      | 10.6                                 | 51                         | 123.8                                     | 43  | 110 | 230    | 266                             | 510                             | 950                                  |
| -16.7                                | 2                          | 35.6                                      | 11.1                                 | 52                         | 125.6                                     | 49  | 120 | 248    | 271                             | 520                             | 968                                  |
| -16.1                                | 3                          | 37.4                                      | 11.7                                 | 53                         | 127.4                                     | 54  | 130 | 266    | 277                             | 530                             | 986                                  |
| -15.6                                | 4                          | 39.2                                      | 12.2                                 | 54                         | 129.2                                     | 60  | 140 | 284    | 282                             | 540                             | 1004                                 |
| -15.0                                | 5                          | 41.0                                      | 12.8                                 | 55                         | 131.0                                     | 66  | 150 | 302    | 288                             | 550                             | 1022                                 |
| -14.4                                | 6                          | 42.8                                      | 13.3                                 | 56                         | 132.8                                     | 71  | 160 | 320    | 293                             | 560                             | 1040                                 |
| -13.9                                | 7                          | 44.6                                      | 13.9                                 | 57                         | 134.6                                     | 77  | 170 | 338    | 299                             | 570                             | 1058                                 |
| -13.3                                | 8                          | 46.4                                      | 14.4                                 | 58                         | 136.4                                     | 82  | 180 | 356    | 304                             | 580                             | 1076                                 |
| -12.8                                | 9                          | 48.2                                      | 15.0                                 | 59                         | 138.2                                     | 88  | 190 | 374    | 310                             | 590                             | 1094                                 |
| -12.2                                | 10                         | 50.0                                      | 15.6                                 | 60                         | 140.0                                     | 93  | 200 | 392    | 316                             | 600                             | 1112                                 |
| -11.7                                | 11                         | 51.8                                      | 16.1                                 | 61                         | 141.8                                     | 99  | 210 | 410    | 321                             | 610                             | 1130                                 |
| -11.1                                | 12                         | 53.6                                      | 16.7                                 | 62                         | 143.6                                     | 100 | 212 | 413    | 327                             | 620                             | 1148                                 |
| -10.6                                | 13                         | 55.4                                      | 17.2                                 | 63                         | 145.4                                     | 104 | 220 | 428    | 332                             | 630                             | 1166                                 |
| -10.0                                | 14                         | 57.2                                      | 17.8                                 | 64                         | 147.2                                     | 110 | 230 | 446    | 338                             | 640                             | 1184                                 |
| - 9.44                               | 15                         | 59.0                                      | 18.3 $18.9$ $19.4$ $20.0$ $20.6$     | 65                         | 149.0                                     | 116 | 240 | 464    | 343                             | 650                             | 1202                                 |
| - 8.89                               | 16                         | 60.8                                      |                                      | 66                         | 150.8                                     | 121 | 250 | 482    | 349                             | 660                             | 1220                                 |
| - 8.33                               | 17                         | 62.6                                      |                                      | 67                         | 152.6                                     | 127 | 260 | 500    | 354                             | 670                             | 1238                                 |
| - 7.78                               | 18                         | 64.4                                      |                                      | 68                         | 154.4                                     | 132 | 270 | 518    | 360                             | 680                             | 1256                                 |
| - 7.22                               | 19                         | 66.2                                      |                                      | 69                         | 156.2                                     | 138 | 280 | 536    | 366                             | 690                             | 1274                                 |
| - 6.67                               | 20                         | 68.0                                      | 21.1                                 | 70                         | 158.0                                     | 143 | 290 | 554    | 371                             | 700                             | 1292                                 |
| - 6.11                               | 21                         | 69.8                                      | 21.7                                 | 71                         | 159.8                                     | 149 | 300 | 572    | 377                             | 710                             | 1310                                 |
| - 5.56                               | 22                         | 71.6                                      | 22.2                                 | 72                         | 161.6                                     | 154 | 310 | 590    | 382                             | 720                             | 1328                                 |
| - 5.00                               | 23                         | 73.4                                      | 22.8                                 | 73                         | 163.4                                     | 160 | 320 | 608    | 388                             | 730                             | 1346                                 |
| - 4.44                               | 24                         | 75.2                                      | 23.3                                 | 74                         | 165.2                                     | 166 | 330 | 626    | 393                             | 740                             | 1364                                 |
| - 3.89                               | 25                         | 77.0                                      | 23.9                                 | 75                         | 167.0                                     | 171 | 340 | 644    | 399                             | 750                             | 1382                                 |
| - 3.33                               | 26                         | 78.8                                      | 24.4                                 | 76                         | 168.8                                     | 177 | 350 | 662    | 404                             | 760                             | 1400                                 |
| - 2.78                               | 27                         | 80.6                                      | 25.0                                 | 77                         | 170.6                                     | 182 | 360 | 680    | 410                             | 770                             | 1418                                 |
| - 2.22                               | 28                         | 82.4                                      | 25.6                                 | 78                         | 172.4                                     | 188 | 370 | 698    | 416                             | 780                             | 1436                                 |
| - 1.67                               | 29                         | 84.2                                      | 26.1                                 | 79                         | 174.2                                     | 193 | 380 | 716    | 421                             | 790                             | 1454                                 |
| - 1.11                               | 30                         | 86.0                                      | 26.7                                 | 80                         | 176.0                                     | 199 | 390 | 734    | 427                             | 800                             | 1472                                 |
| - 0.56                               | 31                         | 87.8                                      | 27.2                                 | 81                         | 177.8                                     | 204 | 400 | 752    | 432                             | 810                             | 1490                                 |
| 0                                    | 32                         | 89.6                                      | 27.8                                 | 82                         | 179.6                                     | 210 | 410 | 770    | 438                             | 820                             | 1508                                 |
| 0.56                                 | 33                         | 91.4                                      | 28.3                                 | 83                         | 181.4                                     | 216 | 420 | 788    | 443                             | 830                             | 1526                                 |
| 1.11                                 | 34                         | 93.2                                      | 28.9                                 | 84                         | 183.2                                     | 221 | 430 | 806    | 449                             | 840                             | 1544                                 |
| 1.67                                 | 35                         | 95.0                                      | 29.4                                 | 85                         | 185.0                                     | 227 | 440 | 824    | 454                             | 850                             | 1562                                 |
| 2.22                                 | 36                         | 96.8                                      | 30.0                                 | 86                         | 186.8                                     | 232 | 450 | 842    | 460                             | 860                             | 1580                                 |
| 2.78                                 | 37                         | 98.6                                      | 30.6                                 | 87                         | 188.6                                     | 238 | 460 | 860    | 466                             | 870                             | 1598                                 |
| 3.33                                 | 38                         | 100.4                                     | 31.1                                 | 88                         | 190.4                                     | 243 | 470 | 878    | 471                             | 880                             | 1616                                 |
| 3.89                                 | 39                         | 102.2                                     | 31.7                                 | 89                         | 192.2                                     | 249 | 480 | 896    | 477                             | 890                             | 1634                                 |
| 4.44<br>5.00<br>5.56<br>6.11<br>6.67 | 40<br>41<br>42<br>43<br>44 | 104.0<br>105.8<br>107.6<br>109.4<br>111.2 | 32.2<br>32.8<br>33.3<br>33.9<br>34.4 | 90<br>91<br>92<br>93<br>94 | 194.0<br>195.8<br>197.6<br>199.4<br>201.2 | 254 | 490 | 914    | 482<br>488<br>493<br>499<br>504 | 900<br>910<br>920<br>930<br>940 | 1652<br>1670<br>1688<br>1706<br>1724 |
| 7.22<br>7.78<br>8.33<br>8.89<br>9.44 | 45<br>46<br>47<br>48<br>49 | 113.0<br>114.8<br>116.6<br>118.4<br>120.2 | 35.0<br>35.6<br>36.1<br>36.7<br>37.2 | 95<br>96<br>97<br>98<br>99 | 203.0<br>204.8<br>206.6<br>208.4<br>210.2 |     |     |        | 510<br>516<br>521<br>527<br>532 | 950<br>960<br>970<br>980<br>990 | 1742<br>1760<br>1778<br>1796<br>1814 |
|                                      |                            |                                           | 37.8                                 | 100                        | 212.0                                     |     |     |        | 538                             | 1000                            | 1832                                 |

Read known temperature in bold face type. Corresponding temperature in degrees Fahrenheit will be found in column to the right. Corresponding temperature in degrees Centigrade will be found in column to the left.

### TEMPERATURE CONVERSION TABLE

| 1000 to 2000 |              |      |                     |              |              | 2000 to 3000 |      |      |      |      |      |
|--------------|--------------|------|---------------------|--------------|--------------|--------------|------|------|------|------|------|
| C.           |              | F.   | C.                  |              | F.           | C.           |      | F.   | C.   |      | F.   |
| 538          | 1000         | 1832 | 816                 | 1500         | 2732         | 1093         | 2000 | 3632 | 1371 | 2500 | 4532 |
|              | 1010         | 1850 | 821                 | 1510         | 2750         | 1099         | 2010 | 3650 | 1377 | 2510 | 4550 |
| 543          | 1020         | 1868 | 827                 | 1520         | 2768         | 1104         | 2020 | 3668 | 1382 | 2520 | 4568 |
| 549          |              |      |                     | 1530         | 2786         | 11104        | 2030 | 3686 | 1388 | 2530 | 4586 |
| 554          | 1030         | 1886 | 832                 |              |              |              |      |      | 1393 | 2540 | 4604 |
| 560          | 1040         | 1904 | 838                 | 1540         | 2804         | 1116         | 2040 | 3704 | 1999 |      |      |
| 566          | 1050         | 1922 | 843                 | 1550         | 2822         | 1121         | 2050 | 3722 | 1399 | 2550 | 4622 |
| 571          | 1060         | 1940 | 849                 | 1560         | 2840         | 1127         | 2060 | 3740 | 1404 | 2560 | 4640 |
| 577          | 1070         | 1958 | 854                 | 1570         | 2858         | 1132         | 2070 | 3758 | 1410 | 2570 | 4658 |
| 582          | 1080         | 1976 | 860                 | 1580         | 2876         | 1138         | 2080 | 3776 | 1416 | 2580 | 4676 |
| 588          | 1090         | 1994 | 866                 | 1590         | 2894         | 1143         | 2090 | 3794 | 1421 | 2590 | 4694 |
| 593          | 1100         | 2012 | 871                 | 1600         | 2912         | 1149         | 2100 | 3812 | 1427 | 2600 | 4712 |
| 599          | 1110         | 2030 | 877                 | 1610         | 2930         | 1154         | 2110 | 3830 | 1432 | 2610 | 4730 |
| 604          | 1120         | 2048 | 882                 | 1620         | 2948         | 1160         | 2120 | 3848 | 1438 | 2620 | 4748 |
| 610          | 1130         | 2066 | 888                 | 1630         | 2966         | 1166         | 2130 | 3866 | 1443 | 2630 | 4766 |
| 616          | 1140         | 2084 | 893                 | 1640         | 2984         | 1171         | 2140 | 3884 | 1449 | 2640 | 4784 |
| 621          | 1150         | 2102 | 899                 | 1650         | 3002         | 1177         | 2150 | 3902 | 1454 | 2650 | 4802 |
| 627          | 1160         | 2120 | 904                 | 1660         | 3020         | 1182         | 2160 | 3920 | 1460 | 2660 | 4820 |
| 632          | 1170         | 2138 | 910                 | 1670         | 3038         | 1188         | 2170 | 3938 | 1466 | 2670 | 4838 |
| 638          | 1180         | 2156 | 916                 | 1680         | 3056         | 1193         | 2180 | 3956 | 1471 | 2680 | 4856 |
| 643          | 1190         | 2174 | 921                 | 1690         | 3074         | 1199         | 2190 | 3974 | 1477 | 2690 | 4874 |
| 640          | 1200         | 2192 | 927                 | 1700         | 3092         | 1204         | 2200 | 3992 | 1482 | 2700 | 4892 |
| $649 \\ 654$ | 1210         | 2210 | 932                 | 1710         | 3110         | 1210         | 2210 | 4010 | 1488 | 2710 | 4910 |
| 660          | 1220         | 2228 | 938                 | 1720         | 3128         | 1216         | 2220 | 4028 | 1493 | 2720 | 4928 |
| 666          | 1230         | 2246 | 943                 | 1730         | 3146         | 1221         | 2230 | 4046 | 1499 | 2730 | 4946 |
| 671          | 1240         | 2264 | 949                 | 1740         | 3164         | 1227         | 2240 | 4064 | 1504 | 2740 | 4964 |
|              | 1250         | 2282 | 954                 | 1750         | 3182         | 1232         | 2250 | 4082 | 1510 | 2750 | 4982 |
| 677          | 1260         | 2300 | 960                 | 1760         | 3200         | 1232         | 2260 | 4100 | 1516 | 2760 | 5000 |
| 682          | 1270         | 2318 |                     | 1770         | 3218         | 1243         | 2270 | 4118 | 1521 | 2770 | 5018 |
| 688          |              | 2336 | 966<br>9 <b>7</b> 1 | 1780         | 3236         | 1249         | 2280 | 4136 | 1527 | 2780 | 5036 |
| 693<br>699   | 1280<br>1290 | 2354 | 977                 | 1790         | 3254         | 1254         | 2290 | 4154 | 1532 | 2790 | 5054 |
|              |              |      |                     |              | 3272         | 1260         | 2300 | 4172 | 1538 | 2800 | 5072 |
| 704          | 1300         | 2372 | 982                 | 1800         | 3272         | 1266         | 2310 | 4172 | 1543 | 2810 | 5090 |
| 710          | 1310         | 2390 | 988                 | 1810<br>1820 |              | 1271         | 2320 | 4208 | 1549 | 2820 | 5108 |
| 716          | 1320         | 2408 | 993                 | 1830         | 3308<br>3326 | 1277         | 2330 | 4226 | 1554 | 2830 | 5126 |
| 721          | 1330         | 2426 | 999                 | 1840         |              | 1282         | 2340 | 4244 | 1560 | 2840 | 5144 |
| 727          | 1340         | 2444 | 1004                |              | 3344         |              |      |      |      |      |      |
| 732          | 1350         | 2462 | 1010                | 1850         | 3362         | 1288         | 2350 | 4262 | 1566 | 2850 | 5162 |
| 738          | 1360         | 2480 | 1016                | 1860         | 3380         | 1293         | 2360 | 4280 | 1571 | 2860 | 5180 |
| 743          | 1370         | 2498 | 1021                | 1870         | 3398         | 1299         | 2370 | 4298 | 1577 | 2870 | 5198 |
| 749          | 1380         | 2516 | 1027                | 1880         | 3416         | 1304         | 2380 | 4316 | 1582 | 2880 | 5216 |
| 754          | 1390         | 2534 | 1032                | 1890         | 3434         | 1310         | 2390 | 4334 | 1588 | 2890 | 5234 |
| 760          | 1400         | 2552 | 1038                | 1900         | 3452         | 1316         | 2400 | 4352 | 1593 | 2900 | 5252 |
| 766          | 1410         | 2570 | 1043                | 1910         | 3470         | 1321         | 2410 | 4370 | 1599 | 2910 | 5270 |
| 771          | 1420         | 2588 | 1049                | 1920         | 3488         | 1327         | 2420 | 4388 | 1604 | 2920 | 5288 |
| 777          | 1430         | 2606 | 1054                | 1930         | 3506         | 1332         | 2430 | 4406 | 1610 | 2930 | 5306 |
| 782          | 1440         | 2624 | 1060                | 1940         | 3524         | 1338         | 2440 | 4424 | 1616 | 2940 | 5324 |
| 788          | 1450         | 2642 | 1066                | 1950         | 3542         | 1343         | 2450 | 4442 | 1621 | 2950 | 5342 |
| 793          | 1460         | 2660 | 1071                | 1960         | 3560         | 1349         | 2460 | 4460 | 1627 | 2960 | 5360 |
| 799          | 1470         | 2678 | 1077                | 1970         | 3578         | 1354         | 2470 | 4478 | 1632 | 2970 | 5378 |
| 804          | 1480         | 2696 | 1082                | 1980         | 3596         | 1360         | 2480 | 4496 | 1638 | 2980 | 5396 |
| 810          | 1490         | 2714 | 1088                | 1990         | 3614         | 1366         | 2490 | 4514 | 1643 | 2990 | 5414 |
| 810          | 1490         | 2/14 | 1088                | 1990         | 5014         | 1900         | 2430 | 4914 | 1049 | 2330 |      |

#### CONVERSION FORMULA

 $C^{\circ} = 5/9 \text{ (F}^{\circ} - 32)$   $F^{\circ} = 9/5 C^{\circ} + 32$ 

#### INTERPOLATION VALUES FOR ABOVE TABLES

| C° | 1    | 2    | 3    | 4    | 5    |
|----|------|------|------|------|------|
| F° | 1.8  | 3.6  | 5.4  | 7.2  | 9.0  |
| F° | 1    | 2    | 3    | 4    | 5    |
| C° | 0.56 | 1.11 | 1.67 | 2.22 | 2.78 |

# DECIMALS OF AN INCH

#### FOR EACH 64th

| Fraction       | 1/64ths | Decimal  | Millimeters | Fraction | 1⁄64ths | Decimal  | Millimeters |
|----------------|---------|----------|-------------|----------|---------|----------|-------------|
|                | 1       | .015625  | . 0397      |          | 33      | .515625  | 13.097      |
| 1/32           | 2       | .03125   | .794        | 17/32    | 34      | . 53125  | 13.494      |
|                | 3       | .046875  | 1.191       |          | 35      | . 546875 | 13.891      |
| 1/16           | 4       | .0625    | 1.588       | 9/16     | 36      | . 5625   | 14.288      |
|                | 5       | .078125  | 1.984       |          | 37      | .578125  | 14.684      |
| 3/32           | 6       | . 09375  | 2.381       | 19/32    | 38      | . 59375  | 15.081      |
|                | 7       | . 109375 | 2.778       |          | 39      | . 609375 | 15.478      |
| 1/8            | 8       | . 125    | 3.175       | 5/8      | 40      | . 625    | 15.875      |
|                | 9       | .140625  | 3.572       |          | 41      | . 640625 | 16.272      |
| $\frac{5}{32}$ | 10      | . 15625  | 3.969       | 21/32    | 42      | . 65625  | 16.669      |
|                | 11      | .171875  | 4.366       |          | 43      | .671875  | 17.066      |
| 3/16           | 12      | . 1875   | 4.763       | 11/16    | 44      | . 6875   | 17.463      |
|                | 13      | .203125  | 5.159       | 10       | 45      | .703125  | 17.859      |
| $\frac{7}{32}$ | 14      | .21875   | 5.556       | 23/32    | 46      | .71875   | 18.256      |
|                | 15      | .234375  | 5.953       |          | 47      | . 734375 | 18.653      |
| 1/4            | 16      | . 250    | 6.350       | 3/4      | 48      | . 750    | 19.050      |
| , .            | 17      | . 265625 | 6.747       | /4       | 49      | .765625  | 19.447      |
| $\frac{9}{32}$ | 18      | .28125   | 7.144       | 25/32    | 50      | .78125   | 19.844      |
| - 02           | 19      | .296875  | 7.541       | 7 02     | 51      | .796875  | 20.241      |
| 5/16           | 20      | .3125    | 7.938       | 13/16    | 52      | .8125    | 20.638      |
|                | 21      | .328125  | 8.334       |          | 53      | .828125  | 21.034      |
| 11/32          | 22      | .34375   | 8.731       | 27/32    | 54      | .84375   | 21.034      |
| 7 32           | 23      | .359375  | 9.128       | /32      | 55      | .859375  | 21.431      |
| 3/8            | 24      | .375     | 9.525       | 7/8      | 56      | .875     | 22.225      |
| 7.6            | 25      | . 390625 | 9.922       | / 8      | 57      | .890625  | 22.622      |
| 13/32          | 26      | . 40625  | 10.319      | 29/32    | 58      | .90625   | 23.019      |
| - 34           | 27      | . 421875 | 10.716      | /8Z      | 59      | .921875  | 23.416      |
| 7/16           | 28      | . 4375   | 11.113      | 15/16    | 60      | .9375    | 23.410      |
| , 10           | 29      | . 453125 | 11.509      | 710      | 61      | .953125  | 24.209      |
| 15/32          | 30      | . 46875  | 11.906      | 31/32    | 62      | .96875   | 24.606      |
|                | 31      | . 484375 | 12.303      |          | 63      | . 984375 | 25.003      |
| $\frac{1}{2}$  | 32      | .500     | 12.700      | 1        | 64      | 1.000    | 25.400      |

#### CHANGES IN ELECTRICAL UNITS

Revisions introduced by the National Bureau of Standard effective on January 1st, 1948, bring into use through adoption by the International Committee on Weights and Measures, revised values for electrical units that are derived from the fundamental mechanical units of length, mass and time.

Values of international units (U.S.) in terms of the absolute units adopted by the National Bureau of Standards are as follows:

1 international ohm = 1.000495 absolute ohms
1 international volt = 1.000330 absolute volts
1 international ampere = 0.999835 absolute ampere
1 international coulomb = 0.999835 absolute coulomb
1 international henry = 1.000495 absolute henrys
1 international farad = 0.999505 absolute farad
1 international watt = 1.000165 absolute watts
1 international joule = 1.000165 absolute joules

These factors should be used in converting values given in terms of international electrical units (U.S.) as maintained at the National Bureau of Standards to the absolute system.

For further information regarding these changes see Circular C459, issued by the National Bureau of Standards, Washington, D. C.

#### CUSTOM ALLOYS

We offer our completely integrated facilities for the production of custom or special purpose alloys and metals to anyone seeking help in this highly specialized field.

As mentioned elsewhere in this handbook, we have the most modern melting, hot rolling, cold drawing and cold rolling facilities as well as the necessary technical and manufacturing know-how.

For over thirty-five years we have cooperated with many nationally known concerns in placing alloys and metal products on a sound commercially manufacturing basis. Care and specialized handling of metals and alloys present problems to many of the larger metal, steel and alloy manufacturers. We have, in many instances, been very successful in solving these problems.

Our research and engineering departments welcome an opportunity to be of service to you.

# MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS

| Unit    | Equivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Hp.   | 746 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 Hp.   | 0.746 kw.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 Hp.   | 33,000 ftlbs. per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 Hp.   | 550 ftlbs. per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 Hp.   | 2,544 Btu. per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 Hp.   | 42.4 Btu. per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 Hp.   | 0.707 Btu. per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 Hp.   | 2.64 lbs. water evaporated per hour from and at 212°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 Kw.   | 1,000 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 Kw.   | 1.34 horsepower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Kw.   | 2,654,200 ftlbs. per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 Kw.   | 44,240 ftlbs. per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 Kw.   | 737.3 ftlbs. per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Kw.   | 3,413 Btu. per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 Kw.   | 56.9 Btu. per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 Kw.   | 0.948 Btu. per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 Kw.   | 3.53 lbs. water evaporated per hour from and at 212°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 Watt  | 1 joule per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 Watt  | 0.00135 horsepower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 Watt  | 3.413 Btu. per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 0.7373 ftlb. per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Watt  | 0.0035 lb. water evaporated per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 Watt  | 44.24 ftlbs. per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 0.746 kw. hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 1,980,000 ftlbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 2,545 Btu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 273,740 kilogram meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2.64 lbs. water evaporated from and at 212°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 17.0 lbs. water raised from 62°F. to 212°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 1,000 watt hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 1.34 horsepower hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 2,654,200 ftlbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 3,600,000 joules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 3,413 Btu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 367,000 kilogram meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Kwhr. | 3.53 lbs. water evaporated from and at 212°F. 22.75 lbs. water raised from 62°F. to 212°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 Ftlb. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Ftlb. | 1,356 joules<br>0.1383 k.g.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 Ftlb. | 0.000000377 kw. hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 Ftlb. | 0.001285 Btu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 Ftlb. | 0.0000005 hp hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0. 10.  | The state of the s |

### A.S.T.M. STANDARDS

# that apply to Electrical-Heating, Resistance Alloys and Electronic Tube Materials.

| <ul> <li>B63 Method of Test for Resistivity of Metallic Materials.</li> <li>B70 Method of Test for Change of Resistance with Temperature of Metallic Materials for Electrical Heating.</li> <li>B76 Method of Accelerated Life Test for Metallic Materials for Electrical Heating.</li> <li>B77 Method of Test for Thermoelectric Power of Electrical-Resistance Alloys.</li> <li>Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.</li> <li>B83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.</li> <li>B84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.</li> <li>B95 Method of Test for Linear Expansion of Metals.</li> <li>B106 Methods of Testing Thermostat Metals.</li> <li>B113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).</li> <li>B144 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).</li> <li>B128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>B155 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>B156 T. Methods of Testing Wire for Grids of Electronic Devices. (Tentative) Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B175 Spec. for Round Nickel Wire for Lamps and Electronic Devices and Lamps.</li> <li>B180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B181 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>B205 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B218 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B26 T. High</li></ul> |          |                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------|
| Materials for Electrical Heating.  Method of Accelerated Life Test for Metallic Materials for Electrical Heating.  Method of Test for Thermoelectric Power of Electrical-Resistance Alloys. Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.  B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.  B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.  B 95 Method of Test for Linear Expansion of Metals.  B 106 Methods of Testing Thermostat Metals.  B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).  B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Methods of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 265 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  B 275 Methods of Testing Fine Round and Flat Wire for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                   | B 63     | Method of Test for Resistivity of Metallic Materials.                      |
| B 76 Method of Accelerated Life Test for Metallic Materials for Electrical Heating.  B 77 Method of Test for Thermoelectric Power of Electrical-Resistance Alloys. Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.  B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.  B 84 Method of Test for Electrical-Heating Elements.  B 95 Method of Test for Linear Expansion of Metals.  B 106 Methods of Testing Thermostat Metals.  B 107 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).  B 118 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 125 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 220 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  E 22 Recommended Pr           | B 70     | Method of Test for Change of Resistance with Temperature of Metallic       |
| Heating.  Method of Test for Thermoelectric Power of Electrical-Resistance Alloys.  Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.  B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.  B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.  B 95 Method of Testing Thermostat Metals.  B 106 Methods of Testing Thermostat Metals.  B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).  B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 220 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                       |          | Materials for Electrical Heating.                                          |
| <ul> <li>B 77 Method of Test for Thermoelectric Power of Electrical-Resistance Alloys. Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.</li> <li>B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.</li> <li>B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.</li> <li>B 95 Method of Test for Inear Expansion of Metals.</li> <li>B 106 Methods of Testing Thermostat Metals.</li> <li>B 113 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).</li> <li>B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)</li> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Methods of Testing Fine Round and Flat Wire for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating.</li> <li>B 210 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                       | B 76     | Method of Accelerated Life Test for Metallic Materials for Electrical      |
| <ul> <li>B 77 Method of Test for Thermoelectric Power of Electrical-Resistance Alloys. Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.</li> <li>B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.</li> <li>B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.</li> <li>B 95 Method of Test for Inear Expansion of Metals.</li> <li>B 106 Methods of Testing Thermostat Metals.</li> <li>B 113 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).</li> <li>B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)</li> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Methods of Testing Fine Round and Flat Wire for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating.</li> <li>B 210 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                       |          | Heating.                                                                   |
| <ul> <li>B 82 Spec. for Drawn or Rolled Alloy, 80 per cent Nickel, 20 per cent Chromium, for Electrical-Heating Elements.</li> <li>B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.</li> <li>B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.</li> <li>B 95 Method of Test for Linear Expansion of Metals.</li> <li>B 106 Methods of Testing Thermostat Metals.</li> <li>B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).</li> <li>B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).</li> <li>B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>B 205 Methods of Testing Fine Round and Flat Wire for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating.</li> <li>B 219 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                               | B 77     |                                                                            |
| for Electrical-Heating Elements.  Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.  B 44 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.  B 95 Method of Test for Linear Expansion of Metals.  B 106 Methods of Testing Thermostat Metals.  B 117 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).  B 118 T. Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Methods of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Testing Fine Round and Flat Wire for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electrical Heating.  Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                           |          |                                                                            |
| B 83 Spec. for Drawn or Rolled Alloy, 60 per cent Nickel, 16 per cent Chromium, and Balance Iron, for Electrical-Heating Elements.  B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.  B 95 Method of Test for Linear Expansion of Metals.  B 106 Methods of Testing Thermostat Metals.  B 118 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).  B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 28 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                    |          |                                                                            |
| and Balance Iron, for Electrical-Heating Elements.  Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors.  B 95 Method of Test for Linear Expansion of Metals.  B 116 Methods of Testing Thermostat Metals.  B 117 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices and Lamps.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 83     |                                                                            |
| B 84 Method of Test for Temperature-Resistance Constants of Alloy Wires for Precision Resistors. B 95 Method of Test for Linear Expansion of Metals. B 106 Methods of Testing Thermostat Metals. B 117 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps). B 118 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors. B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative). Methods of Testing Sleeves and Tubing for Radio Tube Cathodes. B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method). B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps. B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices. B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices. B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces. B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps. B 219 Methods of Chemical Analysis of Metallic Materials for Electrical Heating. B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices. B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative). E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                            |
| Precision Resistors.  B 95 Method of Test for Linear Expansion of Metals. B 106 Methods of Testing Thermostat Metals. B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps). B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors. B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative). B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes. B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method). B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps. B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices. B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices. B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces. B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps. E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating. B 219 Methods of Testing Fine Round and Flat Wire for Electrical Heating. B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices. B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative). E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 84     |                                                                            |
| <ul> <li>B 95 Method of Testing Thermostat Metals.</li> <li>B 106 Methods of Testing Thermostat Metals.</li> <li>B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).</li> <li>B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).</li> <li>B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)</li> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                            |
| <ul> <li>B 106 Methods of Testing Thermostat Metals.</li> <li>B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).</li> <li>B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.</li> <li>B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).</li> <li>B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)</li> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B 95     |                                                                            |
| B 113 Method for Bend Testing of Wire (Wire for Radio Tubes and Incandescent Lamps).  B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                            |
| Lamps).  B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                            |
| B 114 Method of Test for Temperature-Resistance Constants of Sheet Materials for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 220    | · ·                                                                        |
| for Shunts and Precision Resistors.  B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B 114    |                                                                            |
| B 118 T. Methods of Testing Nickel and Nickel-Alloy Wire and Ribbon for Electronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes. B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method). B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps. B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices. B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices. B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces. B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps. E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating. B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices. B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative). E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                            |
| tronic Tube Filaments (Tentative).  B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.  B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)  B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В 118 Т. |                                                                            |
| <ul> <li>B 128 Methods of Testing Sleeves and Tubing for Radio Tube Cathodes.</li> <li>B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)</li> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                            |
| <ul> <li>B 155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method).</li> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 128    |                                                                            |
| Devices (Spring-Back Method).  B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative) Methods of Testing Wire for Supports used in Electronic Devices and Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                            |
| <ul> <li>B 156 T. Methods of Testing Lateral Wire for Grids of Electronic Devices. (Tentative)</li> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                            |
| <ul> <li>B 157 Methods of Testing Wire for Supports used in Electronic Devices and Lamps.</li> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В 156 Т. |                                                                            |
| Lamps.  B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.  B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                            |
| <ul> <li>B 175 Spec. for Round Nickel Wire for Lamps and Electronic Devices.</li> <li>B 180 Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                            |
| <ul> <li>Method of Test for Density of Fine Wire and Ribbon for Electronic Devices.</li> <li>B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.</li> <li>B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.</li> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B 175    | <b>■</b> 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                            |
| Devices.  B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                            |
| B 181 Method of Test for Effect of Controlled Atmospheres Upon Alloys in Electric Furnaces. B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps. E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating. B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices. B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative). E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials. E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 200    | •                                                                          |
| Electric Furnaces.  B 205 Method of Test for Diameter by Weighing of Fine Wire Used in Electronic Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B 181    |                                                                            |
| Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                            |
| Devices and Lamps.  E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.  B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.  B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 205    | Method of Test for Diameter by Weighing of Fine Wire Used in Electronic    |
| <ul> <li>E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.</li> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                            |
| <ul> <li>B 219 Methods of Testing Fine Round and Flat Wire for Electronic Devices.</li> <li>B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).</li> <li>E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.</li> <li>E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E 38     |                                                                            |
| B 267 T. High Resistivity, Low Temperature Coefficient Wire (Tentative).  E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 219    |                                                                            |
| E 21 Recommended Practice for Short-Time Elevated-Temperature Tension Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В 267 Т. |                                                                            |
| Tests of Metallic Materials.  E 22 Recommended Practice for Conducting Long-Time High-Temperature Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                            |
| E 22 Recommended Practice for Conducting Long-Time High-Temperature<br>Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                            |
| Tension Tests of Metallic Materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E 22     | Recommended Practice for Conducting Long-Time High-Temperature             |
| E 38 Methods of Chemical Analysis of Metallic Materials for Electrical Heating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 38     | Methods of Chemical Analysis of Metallic Materials for Electrical Heating. |

#### DEFINITIONS AND GLOSSARY

AGE-HARDENING (Precipitation Hardening)—A process for the heat-treatment of certain non-ferrous alloys to increase strength and hardness.

ANNEALING—Heating and cooling primarily (a) to induce softness, (b) to relieve internal stresses, (c) to obtain the optimum combination of strength and ductility, or (d) to reduce oxide. See "Stress-equalizing Annealing" and "Stress-relief Annealing."

BTU.—British Thermal Unit. The quantity of heat necessary to raise the temperature of one pound of water by 1°F.

CAMBER—Curvature in the plane of rolled sheet or strip.

COEFFICIENT—A number expressing the ratio of change under certain specified conditions such as temperature, length, volume, etc.

COMPRESSIVE YIELD STRENGTH—The stress in compression (pushed together) at which a material exhibits a specified limiting set, commonly taken by the offset method as 0.20 per cent of the specimen's original length. Expressed as psi.

CORROSION—Gradual chemical or electrochemical attack on a metal by atmosphere, moisture or other agents.

CORROSION FATIGUE—The endurance limit of a material when in contact with a specified corrosive medium. See "Endurance Limit."

CREEP STRENGTH—The rate of continuous deformation under stress at a specified temperature. Generally expressed as psi. to produce 0.1 per cent elongation in 10,000 hours at the temperature indicated.

DENSITY—The weight of a metal, usually expressed in pounds per cubic inch or grams per cubic centimeter. Do not confuse with "Specific Gravity."

DUCTILITY—The property which permits deformation under tension without rupture. Values for "Elongation" and "Reduction of Area" generally are taken as the measure of ductility.

ELASTIC LIMIT—The maximum stress a material will stand without permanent deformation.

ELECTRICAL RESISTIVITY—The resistance of a material to passage through it of an electric current. Expressed as ohms (units of resistance) per mil ft. or as microhms (millionth of an ohm) per centimeter cube at a specified temperature.

ELONGATION—The amount of permanent stretch, after fracture in tension, expressed as percentage of the specimen's original length.

ENDURANCE LIMIT—A measure of the limit of safe loading for materials to be used under repeated, cyclic changes of stress. Expressed as psi. Properly, it is the maximum stress to which a metal can be subjected for indefinitely long periods without damage. In practice values are taken at a specified number of cyclic changes of stress (see "Fatigue Strength").

#### DEFINITIONS AND GLOSSARY, Continued

EROSION—The abrasion of metal or other material by liquid or gas, usually accelerated by pressure of solid particles of matter in suspension, and sometimes by corrosion.

FATIGUE STRENGTH—Usually synonymous with Endurance Limit but properly the stress to which a metal can be subjected for a specified number of cyclic changes of stress. Expressed as psi.

HARDNESS—Resistance to indentation, penetration, scratching or bending. Expressed by means of "Brinell," "Rockwell," "Scleroscope" or "Vickers" Hardness Numbers depending upon the testing machine used.

HEAT TRANSFER—The passage of heat from a hot to a cold body, by conduction through intervening layers of solid, liquid or gas. Overall rate of heat transfer through a given system of obstructions is expressed in units of heat, per unit of area of obstructions exposed, per unit of time, per unit of difference in temperature between the hot and cold bodies (Btu. per sq. ft. per hr. per °F). The amount of heat transferred is measured in units of heat per unit of time (Btu. per hr.). See "Thermal Conductivity."

HEAT-TREATING—An operation or combination of operations involving the heating and cooling of a metal to obtain certain desirable conditions or properties, and not for the sole purpose of mechanical working.

IMPACT STRENGTH—A measure of toughness. The stress to fracture a notched specimen with a single blow. Expressed in foot-pounds of energy absorbed. Designated as "Charpy" or "Izod" Impact Strength depending on the testing machine used.

IPY—Inches penetration per year. The average depth to which uniform corrosion would penetrate if a specimen were exposed to corrosion, on one side only, 24 hours per day for 365 days. Calculated from weight loss. See "Mdd."

MAGNETIC TRANSFORMATION POINT—The temperature at which a normally magnetic material becomes substantially non-magnetic. Also called the Curie Point.

MDD —Milligrams per square decimeter per day. The term for expressing average loss in weight from corrosion. A "day" is 24 hours. See "Ipy."

MODULUS OF ELASTICITY—The ratio, within the elastic limit, of stress to the corresponding strain. Expressed in psi, for four types of stress: tension, torsion, compression, shear.

PROOF STRESS—The stress that may be applied without leaving permanent elongation of more than 0.001 inch per inch of the specimen's original length after removal of that stress. Expressed in psi.

PROPORTIONAL LIMIT—The maximum, in psi., at which strain or deformation is directly proportional to stress.

PSI.—Pounds per square inch.

REDUCTION OF AREA—The difference between the original cross-sectional area of a specimen and the least cross-sectional area after rupture in tensile tests. Expressed in percentage of the original cross-sectional area.

#### DEFINITIONS AND GLOSSARY, Continued

SHEAR STRENGTH—The stress required to produce fracture when impressed vertically upon the cross-section of a material. Expressed in psi.

SPECIFIC GRAVITY—The ratio of the weight of a solid or liquid to the weight of an equal volume of water. See "Density."

SPECIFIC HEAT—The amount of heat necessary to raise the temperature of a substance by 1°F. Expressed as Btu. per pound per °F.

STRESS-EQUALIZING ANNEALING—Heating and cooling to homogenize stresses so as to afford the best possible combination of ductility and strength.

STRESS-RELIEF ANNEALING—Heating and cooling to effect partial softening. Also called Temper Annealing.

TENSILE STRENGTH—The stress required to rupture in tension (pull). Expressed in psi. Also called Breaking Strength, Ultimate Strength, and Ultimate Tensile Strength.

THERMAL CONDUCTIVITY—The measure of the heat a substance will conduct through itself. Expressed in Btu., per hour, per sq. ft. of exposed surface, per °F. difference between the adjacent hot and cold bodies, per inch thickness (or the metric equivalents). Do not confuse with "Heat Transfer."

THERMAL EMF—The electromotive force generated when the junction of two dissimilar metals is heated.

THERMAL EXPANSION—The increase in length caused by heating. Expressed in inches of increase, per inch of original length, per degrees of temperature.

THERMOCOUPLE—A device for measuring temperatures by the use of two dissimilar metals in contact; the junction of these metals gives rise to a measurable electrical potential with changes in temperature.

TORSIONAL PROPERTIES—Figures expressing values of a material when stressed by twisting.

TOUGHNESS—Resistance to impact. A combination of strength and ductility.

YIELD POINT—The stress necessary to produce an elongation under load of 0.50 per cent of the specimen's original length. Expressed as psi. Do not confuse with "Yield Strength."

YIELD STRENGTH—The stress at which a material exhibits a specified limiting set, commonly taken by the offset method as 0.20 per cent of the specimen's original length. Expressed as psi.

### CONVERSION FACTORS

Area - Length - Power - Energy - Miscellaneous

| AREA To convert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Multiply By                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Circular Mils to Square Inches Circular Mils to Square Mils Circular Mils to Square Millimeters Square Centimeters to Square Inches Square Feet to Square Meters Square Inches to Circular Mils Square Inches to Square Centimeters Square Inches to Square Millimeters Square Inches to Square Millimeters Square Meters to Square Feet Square Millimeters to Square Inches Square Millimeters to Circular Mils Square Millimeters to Circular Mils Square Mils to Circular Mils Square Mils to Square Inches | .0000007854 $.7854$ $.0005066$ $.155$ $.0929$ $1,273,240.$ $6.4516$ $645.16$ $1,000,000.$ $10.764$ $.00155$ $1,973.51$ $1.2732$ $.000001$ |
| LENGTH  Centimeters to Inches Centimeters to Feet Feet to Centimeters Feet to Meters Inches to Centimeters Inches to Meters Inches to Millimeters Inches to Millimeters Inches to Mills Kilometers to Miles                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} .3937 \\ .03281 \\ 30.48 \\ .3048 \\ 2.54 \\ .0254 \\ 25.4 \\ 1,000. \\ .6214 \end{array}$                              |
| Meters to Feet Meters to Inches Meters to Yards Miles to Kilometers Millimeters to Inches Millimeters to Mils Mils to Inches Mils to Millimeters Yards to Meters                                                                                                                                                                                                                                                                                                                                               | 3.2808<br>39.3701<br>1.0936<br>1.6093<br>.03937<br>39.3701<br>.001<br>.0254                                                               |
| POWER  Foot-Pounds per Minute to Horsepower Foot-Pounds per Minute to Watts Foot-Pounds per Second to Horsepower Foot-Pounds per Second to Watts Horsepower to Foot-Pounds per Minute Horsepower to Foot-Pounds per Second Horsepower to Watts                                                                                                                                                                                                                                                                 | .0000303<br>.0226<br>.001818<br>1.356<br>33,000.<br>550.<br>746.                                                                          |

## POWER—Continued

| To Convert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Multiply By                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Kilogram-Meters per Second to Watts Watts to Foot-Pounds per Minute Watts to Foot-Pounds per Second Watts to Horsepower Watts to Kilogram-Meters per Second                                                                                                                                                                                                                                                                                                                                         | 9.807<br>44.25<br>.7375<br>.001341<br>.1020                                                            |
| ENERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |
| British Thermal Units to Foot-Pounds British Thermal Units to Joules British Thermal Units to Watt-Hours Foot-Pounds to British Thermal Units Foot-Pounds to Joules Foot-Pounds to Kilogram-Meters Gram Calories to Joules Joules to British Thermal Units Joules to Ergs Joules to Foot-Pounds Joules to Gram-Calories Joules to Kilogram-Meters Kilogram-Meters to Foot-Pounds Kilogram-Meters to Joules Watt-Hours to British Thermal Units                                                      | 778. 1,055293 .001285 1.356 .1383 4.186 .000947 10 <sup>7</sup> .7375 .2388 .10198 7.233 9.8117 3.4126 |
| MISCELLANEOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |
| Kilogram to Pounds Kilograms per Kilometer to Pounds per 1000 Feet Ohms per Kilometer to Ohms per 1000 Feet Ohms per 1000 Feet to Ohms per Kilometer Ohms per 1000 Yards to Ohms per Kilometer Pounds to Kilograms Pounds per 1000 Feet to Kilograms per Kilometer Pounds per 1000 Yards to Kilograms per Kilometer Pounds per 1000 Yards to Pounds per Kilometer Resistivity in Microhm Cent. to Ohms CMF Resistivity in Ohms CMF to Microhm Centimeters Specific Gravity to Pounds per Cubic Inch | 2.205<br>.6719<br>.3048<br>3.2808<br>1.0936<br>.4536<br>1.488<br>.4960<br>1.0936<br>6.0153<br>.166     |

# STANDARD RESISTANCE TOLERANCE AND EXTRA CHARGE FOR WIRE AND RIBBON HAVING CLOSER RESISTANCE TOLERANCE THAN STANDARD

### STANDARD RESISTANCE TOLERANCE

### CLASS:

| 1. | Hot Rolled Ribbon and Rods: |  |
|----|-----------------------------|--|
|    | all widths and thicknesses  |  |

| 2. Cold Rolle | d Ribbon. | Any Thickness | or Width | $\pm$ 5% | ) |
|---------------|-----------|---------------|----------|----------|---|

8%

### Cold Drawn Round Wire:

|    | cold Didwin Itodina Whee       |     |     |
|----|--------------------------------|-----|-----|
| 3. | Finer than .002                | ± 1 | 10% |
| 4. | Finer than .005 to .002 incl.  | ±   | 8%  |
| 5. | Finer than .0226 to .005 incl. | ±   | 5%  |
| 6. | Size .0226 and heavier         | ±   | 3%  |

### EXTRAS FOR CLOSER TOLERANCE THAN ABOVE STANDARDS

- 1. For tolerances  $\pm$  5% up to & incl.  $\pm$  7.9% Add to net price 5%
- 2. For tolerances  $\pm$  3% up to & incl.  $\pm$  4.9% Add to net price 5% For tolerances  $\pm$  1% up to & incl.  $\pm$  2.9% Add to net price 10%
- 3. For tolerances  $\pm$  5% \* up to & incl.  $\pm$  9.9% Add to net price 10%
- 4. For tolerances  $\pm$  5% up to & incl.  $\pm$  7.9% Add to net price 5% For tolerances  $\pm$  3%\* up to & incl.  $\pm$  4.9% Add to net price 10%
- 5. For tolerances  $\pm$  3% up to & incl.  $\pm$  4.9% Add to net price 5% For tolerances  $\pm$  1% up to & incl.  $\pm$  2.9% Add to net price 10%
- 6. For tolerances  $\pm~2\%$  up to & incl.  $\pm~2.9\%$  Add to net price ~5% For tolerances  $\pm~1\%^*$  up to & incl.  $\pm~1.9\%$  Add to net price 10%
- \* Closer Resistance Tolerance Than These Are Not Made.

Standard resistance per foot on any wire or ribbon shall be the value calculated from the cross-section of the wire or ribbon and the resistivity of the alloy.

On ribbon which is rolled from round wire, with a width to thickness ratio of 15 or less, the cross-section will be considered as being 6% less than a true rectangle.

For ribbon rolled with a width to thickness ratio of more than 15, the cross-section will be considered as being 17% less than a true rectangle.

# WEIGHTS OF COILS AND SPOOLS

The following tables show approximate weights of wire in coils and on spools for the different sizes: (These figures are subject to some variation.)

### WIRE

| B & S<br>Gauge           | Packed | Spool<br>No. | Spool<br>Material            | Head<br>Diam. | Trav. | Barrel<br>Diam.                                                    | Bore | Weight of<br>Spool in lbs. | Approximate<br>Wgt. in lbs. |
|--------------------------|--------|--------------|------------------------------|---------------|-------|--------------------------------------------------------------------|------|----------------------------|-----------------------------|
| #17 and<br>Heavier       | Coils  |              |                              |               |       |                                                                    |      |                            | 10-125                      |
| Finer than<br>#17 to #22 | Spools | #8           | Metal Bound<br>Wood          | 6"            | 3"    | 21/4"                                                              | 5/8  | 1.22                       | 4-15                        |
| Finer than<br>#22 to #29 | Spools | #5           | Metal Bound<br>Wood          | 4½"           | 3″    | 2"                                                                 | 5/8" | . 80                       | 2½-6                        |
| Finer than #29 to #34    | Spools | #4<br>#3     | Metal Bound<br>Wood<br>Steel | 3″            | 3″    | 1¾″<br>1½″                                                         | 5/8" | .48                        | 1/2-21/2                    |
| Finer than<br>#34 to #40 | Spools | #1           | Aluminum<br>Steel            | 2½"           | 3″    | 1 <sup>3</sup> / <sub>4</sub> "<br>1 <sup>1</sup> / <sub>2</sub> " | 5/8" | .16                        | . 15-1 . 50                 |
| Finer than<br>#40        | Spools | #1           | Aluminum<br>Steel            | 2½"           | 3″    | 1 <sup>3</sup> ⁄ <sub>4</sub> "<br>1 <sup>1</sup> ⁄ <sub>2</sub> " | 5/8" | .16                        | .0350                       |

### RIBBON

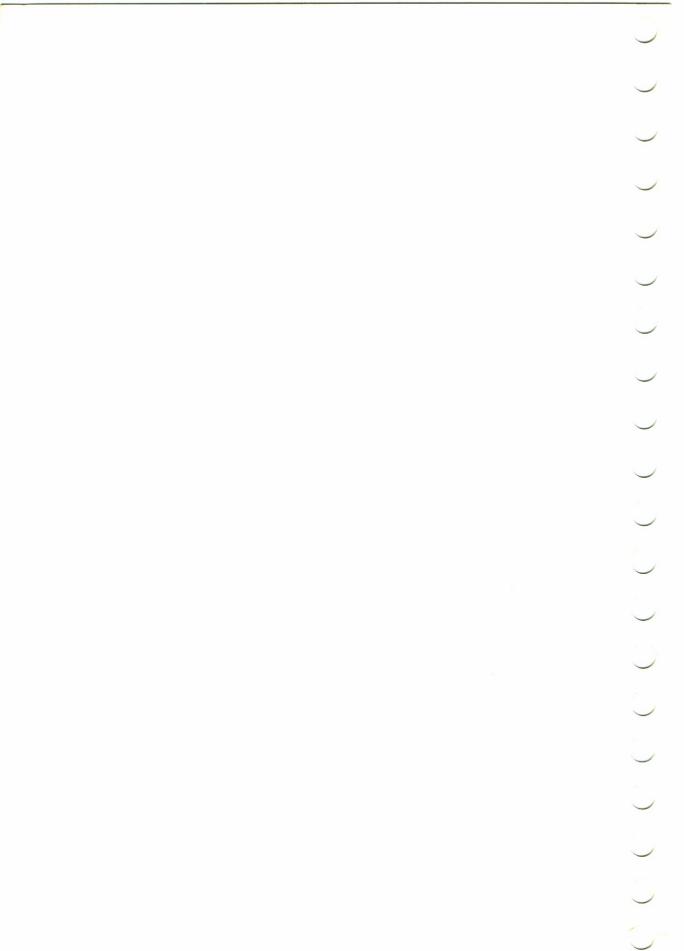
| Width                | Packed | Spool<br>No. | Spool<br>Material   | Head<br>Diam. | Trav. | Barrel<br>Diam. | Bore | Weight of<br>Spool in lbs. | Approximate<br>Wgt. in lbs. |
|----------------------|--------|--------------|---------------------|---------------|-------|-----------------|------|----------------------------|-----------------------------|
| Wider than 1/8"      | Coils  |              |                     |               |       |                 |      |                            | 5-125                       |
| ½8" to ½6" Inc.      | Spools | #9           | Metal Bound<br>Wood | 6"            | 3″    | 4"              | 5/8" | 1.50                       | 2-7                         |
| Narrower<br>than ½ " | Spools | #11          | Metal Bound<br>Wood | 5″            | 3″    | 4"              | 5/8" | 1.18                       | 1/2-2                       |
| Filament             | Spools | #10          | Aluminum            | 4½"           | 3"    | 4"              | 5/8" | .36                        | 2000 ft.                    |

The weight per spool of all ribbon .010" and less in thickness is limited to about 3 lbs. to prevent shifting.

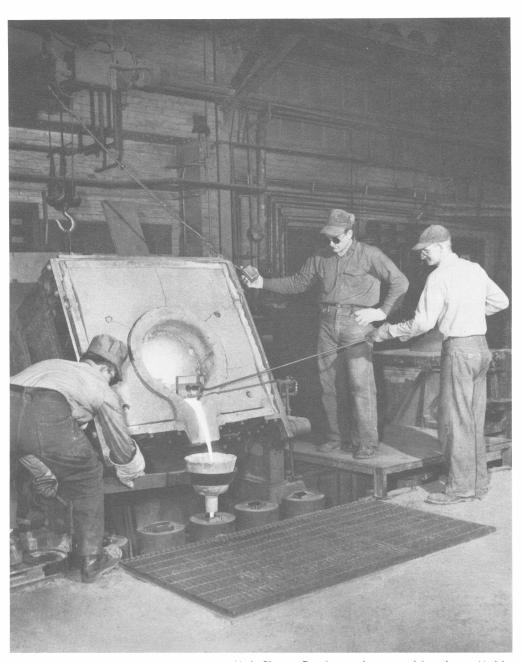
### ALLOY COLOR CHART

TOPHET A—Yellow CUPRON—Pink PURE NICKEL—Green
TOPHET C—Red EVANOHM—Purple MONEL—Brown
TOPHET D—Blue NILSTAIN—Silver

The colors (as found on our labels) were specified for these alloys by the American Society for Testing Materials.

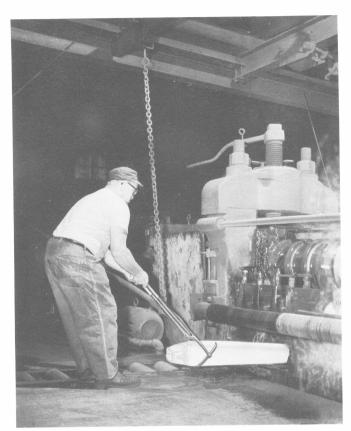

Unless otherwise specified, wire will be furnished on spools as in above table.

This picture section of the handbook is to acquaint customers and friends with some of our facilities and testing equipment.


Pictures cannot tell the entire story but we have tried to arrange them in sequence to give some idea of the operations required to produce wire, ribbon and strip.

The close specifications in existence today require the most accurate and sensitive instruments obtainable. These were selected by our Engineering Department, after careful study and investigation. Some of this equipment is shown in these pictures.

The cooperation of our Engineering Department and the use of these facilities are at your service. We welcome the opportunity to work with you.







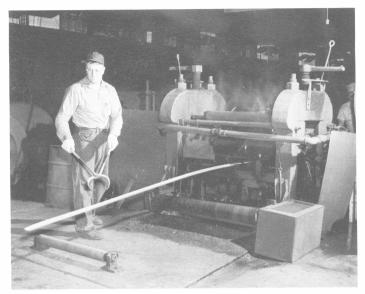

Melt Shop—Pouring molten metal into Ingot Molds.





Cogging an Ingot.



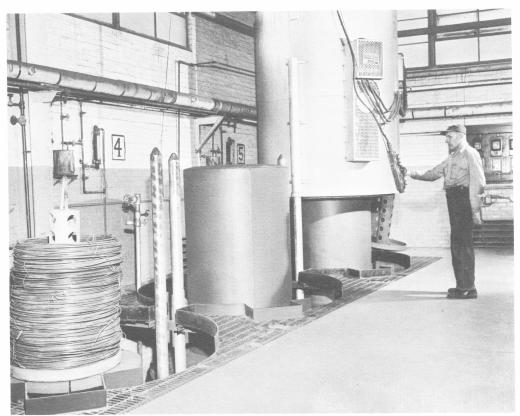

Cogging an Ingot.





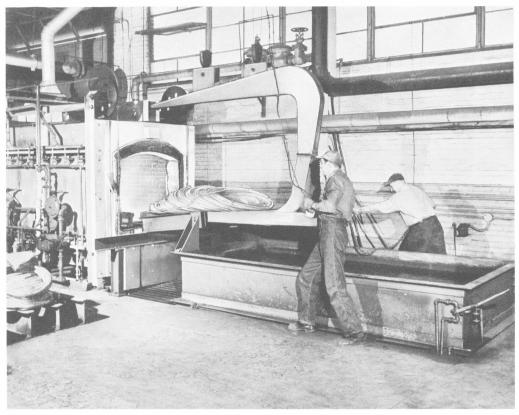
Billet Grinding—Preparing Billets from the Cogging Mill for Hot Rolling.





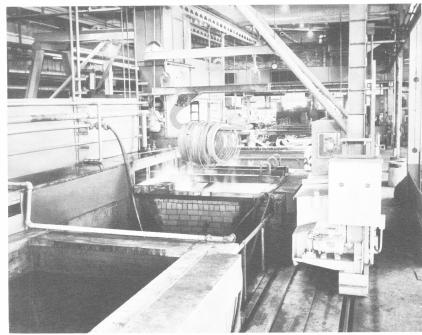

Hot Rolling.



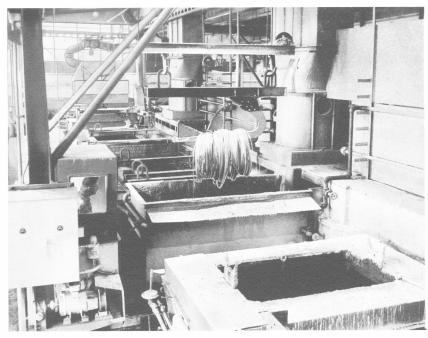

"Looping" Hot Rolled Rod.





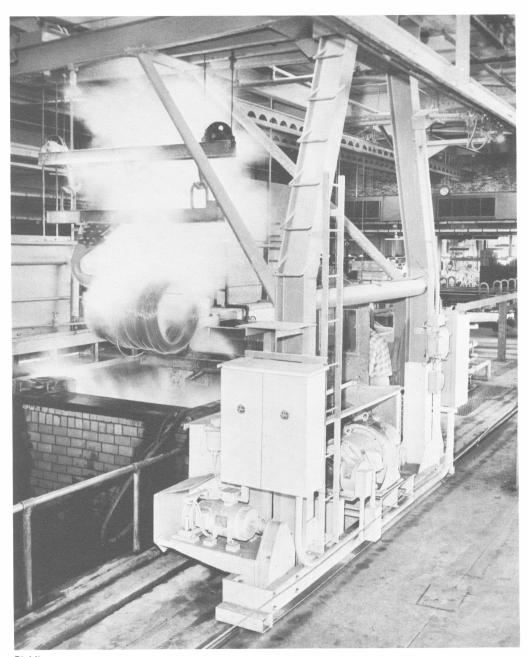

Annealing Hot Rolled Rod in Electric Bell Furnaces.





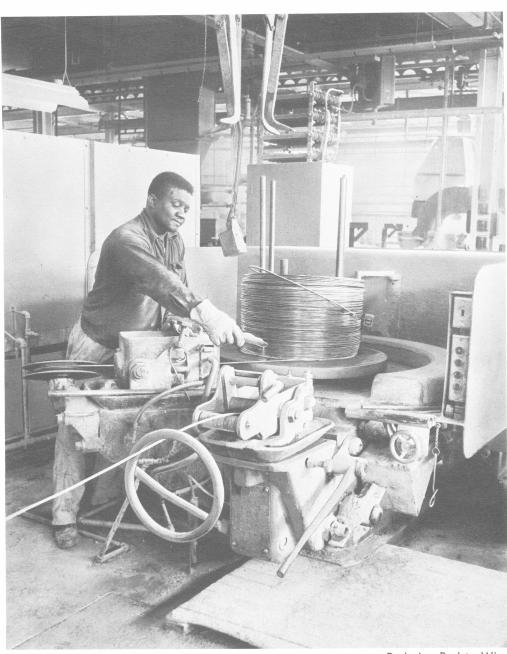

Annealing Hot Rolled Rod.





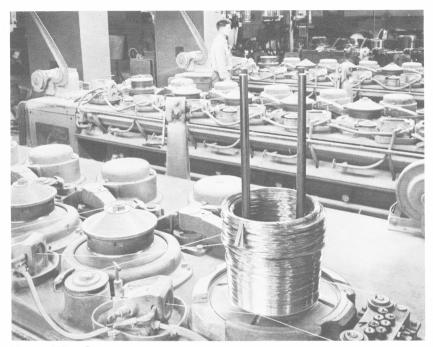

Pickling. These acid baths clean the Annealed Hot Rolled Rod.




Pickling.

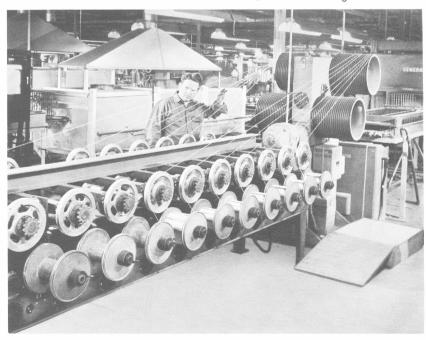





Pickling.






Reducing Rod to Wire.





Heavy Wire Department.

Strand Annealing Round Wire.

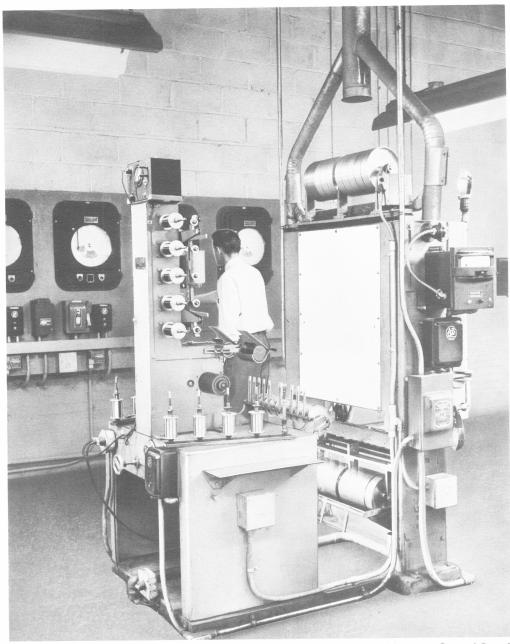






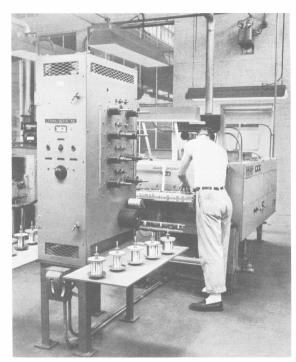

Strand Annealing Flat Wire—Ribbon.






Fine Wire Drawing.

Fine Wire Annealing.








Enameling Machine and Viscosity Control Panel.





Liquid Nylon or Formex coating machine showing oven and takeup.



Textile Insulating of Wire.





General view of Inspection Dep't.





Inspection and Testing of Fine Wire.



Testing for Temperature Coefficient of Resistance.

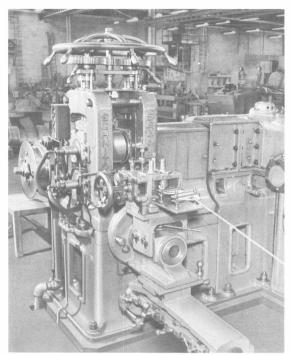




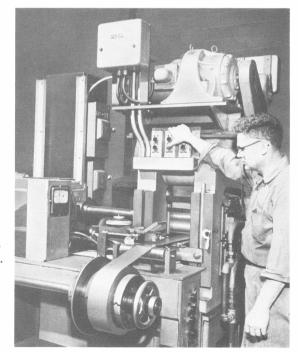
Inspecting and Testing of wire.






Sendzimir Mills.





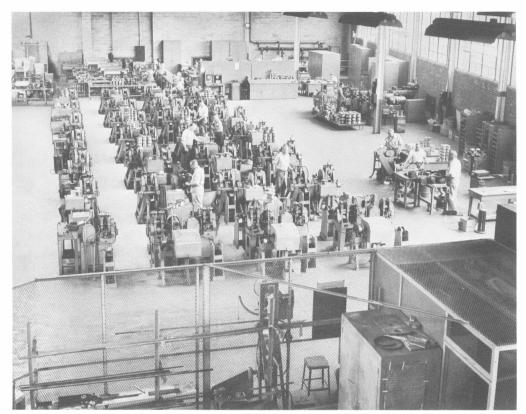

Sendzimir Mill with work rolls removed for set-up of new work.





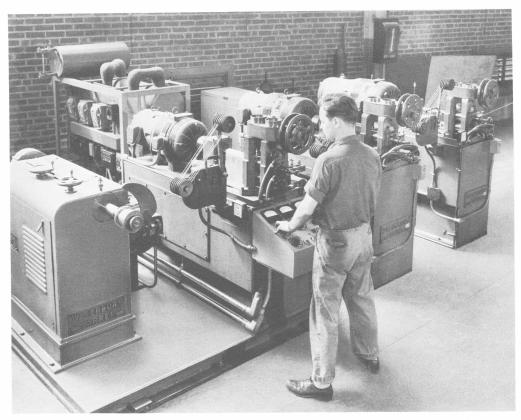
Edgerolling Resistance Strip.




Power Screw Down Two High Rolling Mill with electronic micrometer gauge.

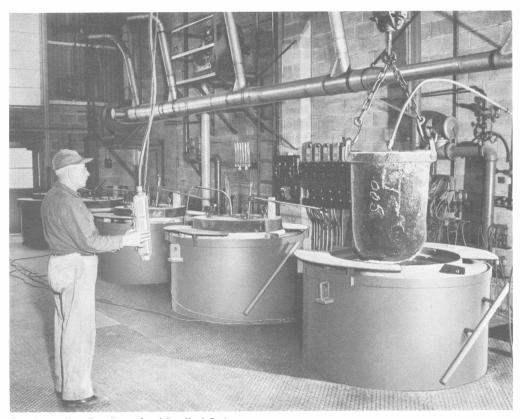





Slitting Strip.






Fine Rolling Dep't.

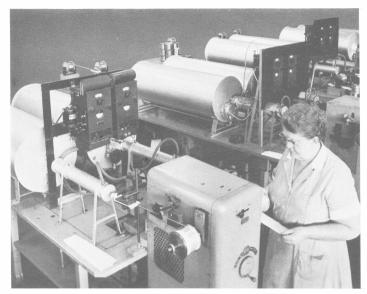




Tandem Rolling Mill for high speed production of precision flat wire.






Pot Annealing Batches of cold rolled Strip.





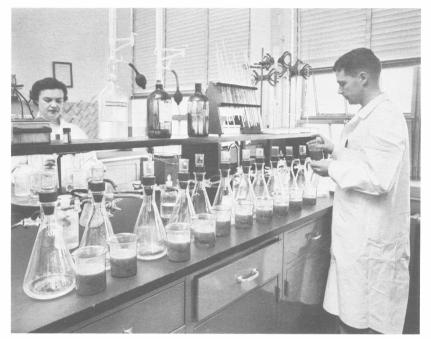
Electric Furnace for Strand Annealing cold rolled strip.





Annealing Filament Ribbon.




Weighing Filament Ribbon.





Research & Engineering Bldg.





View of Chemical Laboratory.







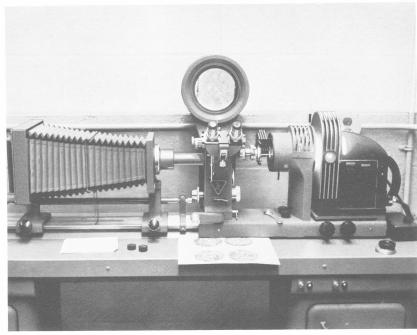



Spectrographic Laboratory showing control panel.



Spectrographic Laboratory showing Microphotometer.



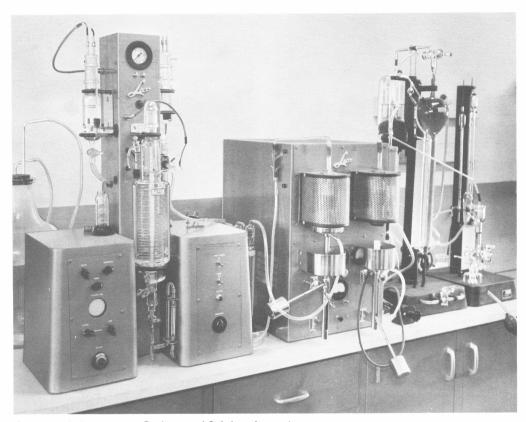



Engineering Laboratory— Instron Testing Machine.



Chemistry Laboratory — Spectrophotometer.





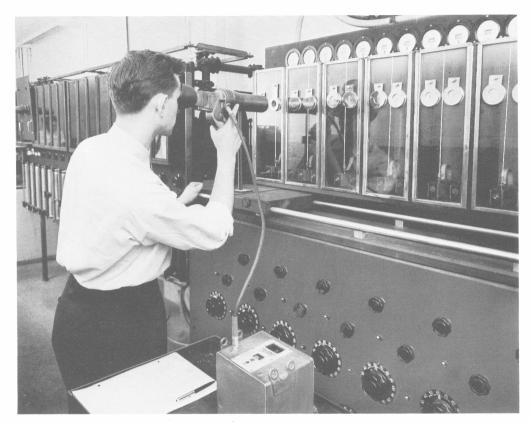

Engineering Laboratory—Metallograph.

Engineering Laboratory—
Dilatometer for determining coefficients of expansion.








Chemistry Laboratory—Carbon and Sulphur determinator.





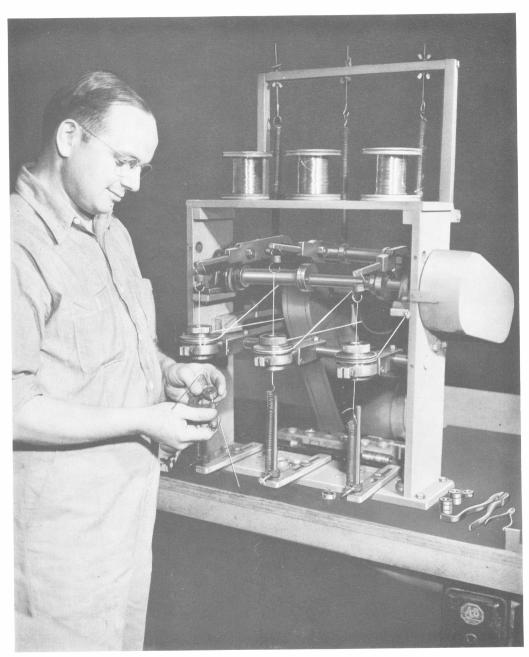
Engineering Laboratory—"Microptic" standard for gauge measurement.





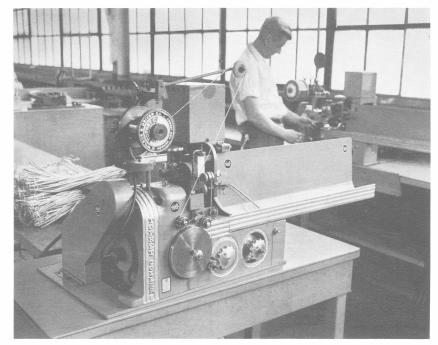
Engineering Laboratory—Life test panel.






Engineering Laboratory— Experimental vacuum melting furnace.




Engineering Laboratory— Inside of vacuum melting furnace.





Diamond Die Department—Polishing.





Tophet Coiler.

# General view of Machine Shop.







Sales Dep't.





Cold Rolling Mill.

## Main Office Building.







Chicago Office and Warehouse.

Printed in the U.S.A.